Part Number Hot Search : 
LC040 KSC5031 P4KE6 G40338 KDR393S MC130 CCLH080 IS93C
Product Description
Full Text Search
 

To Download STM32F373VBH6 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. march 2014 docid022691 rev 5 1/136 stm32f373xx arm ? cortex ? -m4 32b mcu+fpu,up to 256kb flash+32kb sram timers, 4 adcs (12/16-bit),3d acs,2comp.,2.0-3.6v operation datasheet - production data features ? core: arm ? 32-bit cortex ? -m4 cpu (72 mhz max), single-cycle mu ltiplication and hw division, dsp instructio n with fpu (floating- point unit) and mpu (memory protection unit) ? 1.25 dmips/mhz (dhrystone 2.1) ? memories ? 64 to 256 kbytes of flash memory ? 32 kbytes of sram with hw parity check ? crc calculation unit ? reset and power management ? voltage range: 2.0 to 3.6 v ? power-on/power down reset (por/pdr) ? programmable voltage detector (pvd) ? low power modes: sleep, stop, standby ?v bat supply for rtc and backup registers ? clock management ? 4 to 32 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? internal 8 mhz rc with x16 pll option ? internal 40 khz oscillator ? up to 84 fast i/os ? all mappable on external interrupt vectors ? up to 45 i/os with 5 v tolerant capability ? 12-channel dma controller ? one 12-bit, 1.0 s adc (up to 16 channels) ? conversion range: 0 to 3.6 v ? separate analog supply from 2.4 up to 3.6 ? three 16-bit sigma delta adc ? separate analog supply from 2.2 to 3.6 v, up to 21 single/ 11 diff channels ? three 12-bit dac channels ? two fast rail-to-rail analog comparators with programmable input and output ? up to 24 capacitive sensing channels ? 17 timers ? two 32-bit timers and three 16-bit timers with up to 4 ic/oc/pwm or pulse counters ? two 16-bit timers with up to 2 ic/oc/pwm or pulse counters ? four 16-bit timers with up to 1 ic/oc/pwm or pulse counter ? independent and system watchdog timers ? systick timer: 24-bit downcounter ? three 16-bit basic timers to drive the dac] ? calendar rtc with alarm and periodic wakeup from stop/standby ? communication interfaces ? can interface (2.0b active) ?two i 2 cs supporting fast mode plus (1 mbit/s) with 20 ma current sink, smbus/pmbus, wakeup from stop ? three usarts supporting synchronous mode, modem control, iso/iec 7816, lin, irda, auto baud rate, wakeup feature ? three spis (18 mbit/s) with 4 to 16 programmable bit frames, muxed i2s ? hdmi-cec bus interface ? usb 2.0 full speed interface ? serial wire devices, jtag, cortex ? -m4 etm ? 96-bit unique id table 1. device summary reference part numbers stm32f373xx stm32f373c8, stm32f373r8, stm32f373v8, stm32f373cb, stm32f373rb, stm32f373vb, stm32f373cc, stm32f373rc, stm32f373vc lqfp64 (10 10 mm) lqfp100 (14 14 mm) lqfp48 (7 7 mm ) fbga ufbga100 (7 x 7 mm) www.st.com
contents stm32f373xx 2/136 docid022691 rev 5 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 arm? cortex?-m4 core with embedded fl ash and sram . . . . . . . . . . . 12 3.2 memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 embedded flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 cyclic redundancy check (crc) calculation unit . . . . . . . . . . . . . . . . . . . 13 3.5 embedded sram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.7 power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.2 power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.3 voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7.4 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.9 general-purpose input/outputs (gpios) . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.10 direct memory access (dma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.11 interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.11.1 nested vectored interrupt controller (nvic) . . . . . . . . . . . . . . . . . . . . . . 16 3.11.2 extended interrupt/event controller (exti) . . . . . . . . . . . . . . . . . . . . . . 16 3.12 12-bit analog-to-digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.12.3 v bat battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.13 16-bit sigma delta analog-to-digital converters (sdadc) . . . . . . . . . . . . . 18 3.14 digital-to-analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.15 fast comparators (comp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.16 touch sensing controller (tsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.17 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.17.1 general-purpose timers (tim2 to ti m5, tim12 to tim17, tim19) . . . . . 22
docid022691 rev 5 3/136 stm32f373xx contents 4 3.17.2 basic timers (tim6, tim7, tim18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.17.3 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.4 system window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17.5 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.18 real-time clock (rtc) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.19 inter-integrated circuit interface (i 2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.20 universal synchronous/asynchronous re ceiver transmitter (usart) . . . 25 3.21 serial peripheral interface (spi)/inter-integrated sound interfaces (i 2 s) . 26 3.22 high-definition multimedia interface (hdmi) - consumer electronics control (cec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.23 controller area network (can) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.24 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.25 serial wire jtag debug port (swj-dp) . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.26 embedded trace macrocell? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.2 operating conditions at power-up / powe r-down . . . . . . . . . . . . . . . . . . 58 6.3.3 embedded reset and power control bloc k characteristics . . . . . . . . . . . 59 6.3.4 embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.5 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.6 wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
contents stm32f373xx 4/136 docid022691 rev 5 6.3.7 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.8 internal clock source charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.3.9 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.10 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.3.11 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.12 electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.13 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.14 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.15 nrst characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.16 communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.17 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.18 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.19 comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.20 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6.3.21 v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.22 timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.23 usb characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.24 can (controller area network) interface . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.25 sdadc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7 package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115 7.1.1 marking of engineering samples for uf bga100 . . . . . . . . . . . . . . . . . 117 7.1.2 marking of engineering samples for lqfp 100 . . . . . . . . . . . . . . . . . . 120 7.1.3 marking of engineering samples for lqfp 64 . . . . . . . . . . . . . . . . . . . 123 7.1.4 marking of engineering samples for lqfp 48 . . . . . . . . . . . . . . . . . . . 126 7.2 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2.2 selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 128 8 part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
docid022691 rev 5 5/136 stm32f373xx list of tables 6 list of tables table 1. device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 table 2. device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 3. capacitive sensing gpios available on stm32f37 3xx devices . . . . . . . . . . . . . . . . . . . . 19 table 4. no. of capacitive sensing channels available on stm32f373xx devices. . . . . . . . . . . . . . 20 table 5. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 6. comparison of i 2 c analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 7. stm32f373xx i 2 c implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 8. stm32f373xx usart implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 9. stm32f373xx spi/i2s implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 10. legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 table 11. stm32f373xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 table 12. alternate functions for port pa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 table 13. alternate functions for port pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 table 14. alternate functions for port pc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 table 15. alternate functions for port pd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 table 16. alternate functions for port pe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 table 17. alternate functions for port pf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 table 18. stm32f373xx peripheral register boundary addresse s . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 19. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 table 20. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 21. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 22. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 23. operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 24. embedded reset and power control block characterist ics. . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 25. programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 26. embedded internal reference voltage calibration valu es . . . . . . . . . . . . . . . . . . . . . . . . . . 60 table 27. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0 table 28. typical and maximum current consumption from v dd supply at v dd = 3.6 v . . . . . . . . . . 61 table 29. typical and maximum current consumption from v dda supply . . . . . . . . . . . . . . . . . . . . . 63 table 30. typical and maximum v dd consumption in stop and standby modes. . . . . . . . . . . . . . . . 63 table 31. typical and maximum v dda consumption in stop and standby modes. . . . . . . . . . . . . . . 64 table 32. typical and maximum current consumption from v bat supply. . . . . . . . . . . . . . . . . . . . . . 64 table 33. typical current consumption in run mode, code with data processing running from flash 66 table 34. typical current consumption in sleep mode, code running from flash or ram . . . . . . . . . 67 table 35. switching output i/o current cons umption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 36. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 table 37. low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 38. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 39. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 40. hse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 table 41. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 42. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 43. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 44. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 table 45. flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 46. flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 47. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 48. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
list of tables stm32f373xx 6/136 docid022691 rev 5 table 49. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 50. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 51. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 table 52. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 53. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 table 54. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 55. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 56. i2c characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 table 57. i 2 c analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 58. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 table 59. i 2 s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 60. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 table 61. r src max for f adc = 14 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 62. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 63. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 table 64. comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 table 65. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 table 66. ts characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 table 67. v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 table 68. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 table 69. iwdg min/max timeout period at 40 khz (lsi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 table 70. wwdg min-max timeout value @72 mhz (pclk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 table 71. usb startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 table 72. usb dc electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 table 73. usb: full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8 table 74. sdadc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 table 75. vrefsd+ pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 table 76. ufbga100 ? ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 table 77. lqpf100 ? 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . 118 table 78. lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 121 table 79. lqfp48 ? 7 x 7 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 124 table 80. package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 table 81. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 table 82. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
docid022691 rev 5 7/136 stm32f373xx list of figures 7 list of figures figure 1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 2. stm32f373xx lqfp48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 3. stm32f373xx lqfp64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 4. stm32f373xx lqfp100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 5. stm32f373xx bga100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 figure 6. stm32f373xx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 8 figure 7. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 8. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 figure 9. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 figure 10. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 figure 11. typical v bat current consumption (lse and rtc on/lsed rv[1:0]='00') . . . . . . . . . . . . 65 figure 12. high-speed external clock source ac timing diagra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 figure 13. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 figure 14. typical application with an 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 15. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 figure 16. hsi oscillator accuracy characte rization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 figure 17. tc and tta i/o input characteristics - cmos port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 figure 18. tc and tta i/o input characteri stics - ttl port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 figure 19. five volt tolerant (ft and ftf) i/o input charac teristics - cmos port . . . . . . . . . . . . . . . . 86 figure 20. five volt tolerant (ft and ftf) i/o input charac teristics - ttl port . . . . . . . . . . . . . . . . . . . 86 figure 21. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 figure 22. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 figure 23. i 2 c bus ac waveforms and measurement ci rcuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 figure 24. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 figure 25. spi timing diagram - slave mode and cpha = 1 (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 figure 26. spi timing diagram - master mode (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 figure 27. i 2 s slave timing diagram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 figure 28. i 2 s master timing diag ram (philips protocol) (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 figure 29. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 figure 30. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 figure 31. 12-bit buffered /non-buffered dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 figure 32. usb timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 33. ufbga100 ? ultra fine pitch ball grid array, 7 x 7 mm, 0.50 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 figure 34. ufbga100 package top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 figure 35. lqfp100 ?14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 118 figure 36. lqfp100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 figure 37. lqfp100 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 figure 38. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 121 figure 39. lqfp64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 figure 40. lqfp64 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 figure 41. lqfp48 ? 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 124 figure 42. lqfp48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 figure 43. lqfp48 package top view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 figure 44. lqfp64 p d max vs. t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
introduction stm32f373xx 8/136 docid022691 rev 5 1 introduction this datasheet provides the ordering informat ion and mechanical devic e characteristics of the stm32f373xx microcontrollers. this stm32f373xx datasheet should be re ad in conjunction with the rm0313 reference manual. the reference manual is avail able from the stmicroelectronics website www.st.com. for information on the cortex ? -m4 with fpu core, please refer to: ? cortex ? -m4 with fpu technical reference manual, available from the www.arm.com website. ? stm32f3xxx and stm32f4xxx cortex ? -m4 programming manual (pm0214) available from the www.st.com website.
docid022691 rev 5 9/136 stm32f373xx description 47 2 description the stm32f373xx family is based on the high-performance arm ? cortex ? -m4 32-bit risc core operating at a frequency of up to 72 mhz, and embedding a floating point unit (fpu), a memory protection unit (mpu) and an embedded trace macrocell? (etm). the family incorporates high-speed embedded memories (up to 256 kbyte of flash memory, up to 32 kbytes of sram), and an extensive range of enhanced i/os and peripherals connected to two apb buses. the stm32f373xx devices offer one fast 12-bit adc (1 msps), three 16-bit sigma delta adcs, two comparators, two dacs (dac1 wit h 2 channels and dac2 with 1 channel), a low-power rtc, 9 general-purpose 16-bit timers, two general-purpose 32-bit timers, three basic timers. they also feature standard and advanced comm unication interfaces: two i2cs, three spis, all with muxed i2ss, three usarts, can and usb. the stm32f373xx family operates in the -40 to +85 c and -40 to +105 c temperature ranges from a 2.0 to 3.6 v power supply. a co mprehensive set of powe r-saving mode allows the design of low-power applications. the stm32f373xx family offers devices in five packages ranging from 48 pins to 100 pins. the set of included peripherals changes with the device chosen.
description stm32f373xx 10/136 docid022691 rev 5 table 2. device overview peripheral stm32f 373cx stm32f 373rx stm32f 373vx flash (kbytes) 64 128 256 64 128 256 64 128 256 sram (kbytes) 16 24 32 16 24 32 16 24 32 timers general purpose 9 (16-bit) 2 (32 bit) basic 3 (16-bit) comm. interfaces spi/i2s 3 i 2 c2 usart 3 can 1 usb 1 gpios normal i/os (tc, tta) 36 52 84 5 volts tolerant i/os (ft, ftf) 20 28 45 12-bit adcs 1 16-bit adcs sigma- delta 3 12-bit dacs outputs 3 analog comparator 2 capacitive sensing channels 14 17 24 max. cpu frequency 72 mhz main operating voltage 2.0 to 3.6 v 16-bit sdadc operating voltage 2.2 to 3.6 v operating temperature ambient operating temperature: ? 40 to 85 c / ? 40 to 105 c junction temperature: - -40 to 125 c packages lqfp48 lqfp64 lqfp100, ufbga100 (1) 1. ufbga100 package available on 256-kb versions only.
docid022691 rev 5 11/136 stm32f373xx description 47 figure 1. block diagram 1. af: alternate function on i/o pins. 2. example given for stm32f372xx device. 0! ;     = %84)4 77$' .6)#  bit !$# *4!'37 !).s *4$) *4#+37#,+ *4-337$!4 *4234 *4$/ .2%3%4 6 $$ to6 88!& 0"; = 0#;= !("to 53"&3 #!.48#!.28 -/3) -)3/ 32!- [ [elw 7+50 f pd[ -(z 6 66 3#, 3$! 3-"! )# 62%& $-! 4)- 4)- 84!,/3#  -(z 84!,k(z /3#?). /3#?/54 /3#?/54 /3#?). !0"& pd[ -(z (#,+ -!.!'4 !0"0#,+ as!& &lashupto+" 6/,42%' 64/6 6 '' 0/7%2 "ackupinterface as!& "us-atrix  bit )nterface upto+" 24# #/24%8- #05 )bus $bus 0bus obl &lash 4race #ontroller 53!24 53!24 30))3 channels "ackup reg 3#, 3$! 3-"! )# as!& 28 48 #43 243 53!24 4empsensor 62%& 0$;= 0%;= #hannels %42 #hannels %42 &#,+ 3tandby )7$' #9 '',2 #96: 0/20$2 3500,9 #9 ''$ 6$$! 633! 6 "!4 3mart#ardas!& 28 48 #43 243 3mart#ardas!& 28 48 #43 243 3mart#ardas!& !0"& pd[ -(z .6)# 30))3 -/3) -)3/ 3#+ .33as!& )&  interface 350%26)3)/. 06$ 2eset )nt # 9'',2 !("to !0" !0" !75 0/2 !.4) 4!-0 3ystem 0&;bits= 3#+ .33as!& -/3) -)3/ [ [elw 30))3 3#+ .33as!& 2%3%4 #,/#+ #42, !0"0#,+  bit $!#?/54 )& #9''$ $!#?/54as!& $!#?/54as!& 53!24#,+ #%##,+ !$##,+ 3$!$# &5& !(" '0)/ 0/24 ! '0)/ 0/24 " '0)/ 0/24 # '0)/ 0/24 $ '0)/ 0/24 % '0)/ 0/24 & as!& as!& 4)- 4)- 4)- #hannels #hannels #hannel #omp#hannel "2+as!& #omp#hannel "2+as!& #omp#hannel "2+as!& ($-)#%# ($-)#%#as!& $!#?/54as!& 4)- 4)- 4)- #9''$  bit3$!$# 62%&3$ 62%&3$ )& #9''6'  bit3$!$# )& #9''6'   bit3$!$# )& 3$!$#).s 3$!$#).s sharedw 3$!$#).s sharedw3$ 6$$3$ 6$$3$ #/-0 #9'' #/-0 393#&'  #4, ).s /54sas!& 4ouch3ensing #ontroller 'roupsof channelsmax 4)- #hannels %42 as!& 4)- #hannels %42 as!& bx#!. $-! 7,0  & hanne ov(75 & hannel (75 32!-" channels 4)-  #hannelas!& 4)- 4)- #hannelas!& as!& 3$!$# dv$) dv$) #,+ 53"?$-53"?$0 6333$ !("&max-(z  bit $!#?/54 )&  bit $!#?/54 )& 069 2#,3 #9 ''$ 0,, 2#(3-(z
functional overview stm32f373xx 12/136 docid022691 rev 5 3 functional overview 3.1 arm? cortex?-m4 core wi th embedded flash and sram the arm cortex-m4 processor is the latest generation of arm processors for embedded systems. it was developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. the arm cortex-m4 32-bit risc processor features exceptional code-efficiency, delivering the high-performance expected from an arm core in the memory size usually associated with 8- and 16-bit devices. the processor supports a set of dsp instructions which allow efficient signal processing and complex algorithm execution. its single precision fpu speeds up software development by using metalanguage development tools, while avoiding saturation. with its embedded arm core, the stm32f373xx family is compatible with all arm tools and software. figure 1 shows the general block diagram of the stm32f373xx family. 3.2 memory protection unit the memory protection unit (mpu) is used to se parate the processing of tasks from the data protection. the mpu can manage up to 8 protection areas that can all be further divided up into 8 subareas. the protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. the memory protection unit is especially help ful for applications w here some critical or certified code has to be protected against th e misbehavior of other tasks. it is usually managed by an rtos (real-time operating system). if a program accesses a memory location that is prohibited by the mpu, the rt os can detect it and take action. in an rtos environment, the kernel can dynamically update the mpu area setting, based on the process to be executed. the mpu is optional and can be bypassed for applications that do not need it. the cortex-m4 processor is a high perf ormance 32-bit processor designed for the microcontroller market. it offers significant benefits to developers, including: ? outstanding processing performance co mbined with fast interrupt handling ? enhanced system debug wit h extensive breakpoint and trace capabilities ? efficient processor core, system and memories ? ultralow power consumption wit h integrated sleep modes ? platform security robustness with optional integrated memory protection unit (mpu). with its embedded arm core, the stm32f3 73xx devices are comp atible with all arm development tools and software.
docid022691 rev 5 13/136 stm32f373xx functional overview 47 3.3 embedded flash memory all stm32f373xx devices feature up to 256 kbytes of embedded flash memory available for storing programs and data. the flash memory access time is adjusted to the cpu clock frequency (0 wait state from 0 to 24 mhz, 1 wait state from 24 to 48 mhz and 2 wait states above). 3.4 cyclic redundancy che ck (crc) calculation unit the crc (cyclic redundancy check) calculati on unit is used to get a crc code using a configurable generator polynomial value and size. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc calculation unit helps compute a signature of the software during runtime, to be compar ed with a reference signature generated at linktime and stored at a given memory location. 3.5 embedded sram all stm32f373xx devices feature up to 32 kbyt es of embedded sram with hardware parity check. the memory can be acce ssed in read/write at cpu clock speed with 0 wait states. 3.6 boot modes at startup, boot0 pin and boot1 option bit are used to select one of three boot options: ? boot from user flash ? boot from system memory ? boot from embedded sram the boot loader is located in system memory. it is used to reprogram the flash memory by using usart1 (pa9/pa10), u sart2 (pd5/pd6) or usb (pa11/pa12) through dfu (device firmware upgrade).
functional overview stm32f373xx 14/136 docid022691 rev 5 3.7 power management 3.7.1 power supply schemes ? v dd : external power supply for i/os and the internal regulator. it is provided externally through v dd pins, and can be 2.0 to 3.6 v. ? v dda = 2.0 to 3.6 v: ? external analog power supplies for reset blocks, rcs and pll ? supply voltage for 12-bit adc, dacs and comparators (minimum voltage to be applied to v dda is 2.4 v when the 12-bit adc and dac are used). ? v ddsd12 and v ddsd3 = 2.2 to 3.6 v: supply voltages for sdadc1/2 and sdadcd3 sigma delta adcs. independent from v dd /v dda . ? v bat = 1.65 to 3.6 v: power supply for rtc, external clock 32 khz oscillator and backup registers when v dd is not present. 3.7.2 power supply supervisor ? the device has an integrated power-on reset (por)/power-down reset (pdr) circuitry. it is always active, and ensures proper operation starting from/down to 2 v. the device remains in reset mode when v dd is below a specified threshold, v por/pdr , without the need for an external reset circui t. the por monitors only the v dd supply voltage. during the startup phase it is required that v dda should arrive first and be greater than or equal to v dd . ? the pdr monitors both the v dd and v dda supply voltages, however the v dda power supply supervisor can be disabled (by programming a dedicated option bit) to reduce the power consumption if the app lication design ensures that v dda is higher than or equal to v dd . the device features an embedded programmable voltage detector (pvd) that monitors the v dd power supply and compares it to the v pvd threshold. an interrupt can be generated when v dd drops below the v pvd threshold and/or when v dd is higher than the v pvd threshold. the interrupt service routine can then generate a warning message and/or put the mcu into a safe state. the pvd is enabled by software. 3.7.3 voltage regulator the regulator has three operation modes: main (mr), low power (lpr), and power-down. ? the mr mode is used in the nominal regulation mode (run) ? the lpr mode is used in stop mode. ? the power-down mode is used in standby mo de: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption. the voltage regulator is always enabled after reset. it is disabled in standby mode.
docid022691 rev 5 15/136 stm32f373xx functional overview 47 3.7.4 low-power modes the stm32f373xx supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ? sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs. ? stop mode stop mode achieves the lowest power consumption while retaining the content of sram and registers. all clocks in the 1.8 v domain are stopped, the pll, the hsi rc and the hse crystal oscillators are disabled . the voltage regulator can also be put either in normal or in low-power mode. the device can be woken up from stop mode by any of the exti line. the exti line source can be one of the 16 external lines, the pvd output, the usarts, the i2cs, the cec, the usb wakeup, and the rtc alarm. ? standby mode the standby mode is used to achieve the lowest power consumption. the internal voltage regulator is switched off so that the entire 1.8 v domain is powered off. the pll, the hsi rc and the hse crystal oscillato rs are also switched off. after entering standby mode, sram and register contents are lost except for registers in the backup domain and standby circuitry. the device exits standby mode when an external reset (nrst pin), an iwdg reset, a rising edge on the wkup pin, or an rtc alarm occurs. note: the rtc, the iwdg, and the corresponding clock sources are not stopped by entering stop or standby mode. 3.8 clocks and startup system clock selection is perf ormed on startup, however the in ternal rc 8 mhz oscillator is selected as default cpu clock on reset. an external 4-32 mhz clock can be selected, in which case it is monitored for fa ilure. if failure is detected, th e system automatically switches back to the internal rc oscillator. a software interrupt is genera ted if enabled. similarly, full interrupt management of the pll clock entry is available when necessary (for example with failure of an indirectly used external oscillator). several prescalers allow to configure the ahb frequency, the high speed apb (apb2) and the low speed apb (apb1) domain s. the maximum fr equency of the ah b and the high speed apb domains is 72 mhz, while the maximum allowed fr equency of t he low speed apb domain is 36 mhz. 3.9 general-purpose in put/outputs (gpios) each of the gpio pins can be configured by so ftware as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions. all gpios are high current capable except for analog inputs. the i/os alternate function configuration c an be locked if needed following a specific sequence in order to avoid spurious writing to the i/os registers.
functional overview stm32f373xx 16/136 docid022691 rev 5 do not reconfigure gpio pins which are not present on 48 and 64 pin packages to the analog mode. additional current consumption in the range of tens of a per pin can be observed if v dda is higher than v ddio . 3.10 direct memory access (dma) the flexible 12-channel, general-purpose dma is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. each channel is connected to dedicated hardware dma requests, with software trigger support for each channel. configuration is done by software and transfer sizes between source and destination are independent. the two dmas can be used with the main peripherals: spis, i2cs, usarts, dacs, adc, sdadcs, general-purpose timers. 3.11 interrupts and events 3.11.1 nested vectored in terrupt controller (nvic) the stm32f373xx devices embed a nested vectored interrupt controller (nvic) able to handle up to 60 maskable interrupt channels and 16 priority levels. the nvic benefits are the following: ? closely coupled nvic gives lo w latency interrupt processing ? interrupt entry vector table address passed directly to the core ? closely coupled nvic core interface ? allows early processing of interrupts ? processing of late arriving higher priority interrupts ? support for tail chaining ? processor state automatically saved ? interrupt entry restored on interrupt exit with no instruction overhead the nvic hardware block provides flexible interrupt management features with minimal interrupt latency. 3.11.2 extended interrupt/event controller (exti) the extended interrupt/event co ntroller consists of 29 edge detector lines used to generate interrupt/event requ ests and wake-up the system. ea ch line can be independently configured to select the trig ger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains t he status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the internal clock period. up to 84 gpios can be connected to the 16 external interrupt lines.
docid022691 rev 5 17/136 stm32f373xx functional overview 47 3.12 12-bit analog-to-dig ital converter (adc) the 12-bit analog-to-digital converter is based on a successive approximation register (sar) architecture. it has up to 16 external channels (ain15:0) and 3 internal channels (temperature sensor, voltage reference, v bat voltage measurement) performing conversions in single-shot or scan modes. in scan mode, automatic conversion is performed on a selected group of analog inputs. the adc can be served by the dma controller. an analog watchdog feature allows very precis e monitoring of the converted voltage of one, some or all selected channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. the events generated by the timers (timx) can be internally connected to the adc start and injection trigger, respectively, to allow the application to sy nchronize a/d conversion and timers. 3.12.1 temperature sensor the temperature sensor (ts) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connec ted to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the te mperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. see table 65: temperature sensor calibration values on page 104 . 3.12.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally connected to th e adc_in17 input channel. the precise voltage of v refint is individually measured for each part by st during production test and stored in the syste m memory area. it is accessible in read-only mode. 3.12.3 v bat battery voltage monitoring this embedded hardware feature allows the application to measure the v bat battery voltage using the internal adc channel adc_in18. as the v bat voltage may be higher than v dda , and thus outside the adc input range, the v bat pin is internally connected to a divider by 2. as a consequence, the converted digital value is half the v bat voltage.
functional overview stm32f373xx 18/136 docid022691 rev 5 3.13 16-bit sigma delta analog -to-digital converters (sdadc) three 16-bit sigma-delta analog-to-digital converters are embedded in the stm32f373xx. they have up to two separate supply voltages allowing the analog function voltage range to be independent from the stm32f373xx power supply. they share up to 21 input pins which may be configured in any combination of single-e nded (up to 21) or differential inputs (up to 11). the conversion speed is up to 16.6 ksps fo r each sdadc when converting multiple channels and up to 50 ksps per sdadc if si ngle channel conversion is used. there are two conversion modes: single conversion mode or continuous mode, capable of automatically scanning any number of channels. the data can be automatically stored in a system ram buffer, reducing the software overhead. a timer triggering system can be used in order to control the start of conversion of the three sdadcs and/or the 12-bit fast ad c. this timing control is very flexible, capable of triggering simultaneous conversions or inserting a programmable delay between the adcs. up to two external reference pins (vrefsd+, vrefsd-) and an internal 1.2/1.8 v reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to fine-tune the input voltage range of the sdadc. 3.14 digital-to-analog converter (dac) the devices feature two 12-bit buffered dacs with three output channels that can be used to convert three digital signals into three an alog voltage signal outputs. the internal structure is composed of integrated resist or strings and an am plifier in inverting configuration. this digital interface supports the following features: ? two dac converters with three output channels: ? dac1 with two output channels ? dac2 with one output channel. ? 8-bit or 10-bit monotonic output ? left or right data alignment in 12-bit mode ? synchronized update capability ? noise-wave generation (dac1 only) ? triangular wave generation (dac1 only) ? dual dac channel independent or si multaneous conversions (dac1 only) ? dma capability for each channel ? external triggers for conversion
docid022691 rev 5 19/136 stm32f373xx functional overview 47 3.15 fast comparators (comp) the stm32f373xx embeds 2 comparators with rail-to-rail inputs and high-speed output. the reference voltage can be internal or external (delivered by an i/o). the threshold can be one of the following: ? dacs channel outputs ? external i/o ? internal reference voltage (v refint ) or submultiple (1/4 v refint , 1/2 v refint and 3/4 v refint ) the comparators can be combined into a window comparator. both comparators can wake up the device from stop mode and generate interrupts and breaks for the timers. 3.16 touch sensing controller (tsc) the devices provide a simple solution for addi ng capacitive sensing functionality to any application. capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touc h by a dielectric (glass, plastic, ...). the capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition pr inciple. it consists of charging the electrode capacitance and t hen transferring a part of the accumulated charges into a sampling capacitor until the voltage across this ca pacitor has reached a specific threshold. to limit the cpu bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and on ly requires few external components to operate. the touch sensing controller is fully supported by the stmtouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. up to 24 touch sensing electrodes can be cont rolled by the tsc. the touch sensing i/os are organized in 8 acquisition groups, with up to 4 i/os in each group. table 3. capacitive sensing gpio s available on stm32f373xx devices group capacitive sensing signal name pin name group capacitive sensing signal name pin name 1 tsc_g1_io1 pa0 5 tsc_g5_io1 pb3 tsc_g1_io2 pa1 tsc_g5_io2 pb4 tsc_g1_io3 pa2 tsc_g5_io3 pb6 tsc_g1_io4 pa3 tsc_g5_io4 pb7 2 tsc_g2_io1 pa4 6 tsc_g6_io1 pb14 tsc_g2_io2 pa5 tsc_g6_io2 pb15 tsc_g2_io3 pa6 tsc_g6_io3 pd8 tsc_g2_io4 pa7 tsc_g6_io4 pd9
functional overview stm32f373xx 20/136 docid022691 rev 5 3 tsc_g3_io1 pc4 7 tsc_g7_io1 pe2 tsc_g3_io2 pc5 tsc_g7_io2 pe3 tsc_g3_io3 pb0 tsc_g7_io3 pe4 tsc_g3_io4 pb1 tsc_g7_io4 pe5 4 tsc_g4_io1 pa9 8 tsc_g8_io1 pd12 tsc_g4_io2 pa10 tsc_g8_io2 pd13 tsc_g4_io3 pa13 tsc_g8_io3 pd14 tsc_g4_io4 pa14 tsc_g8_io4 pd15 table 4. no. of capacitive sensing channels available on stm32f373xx devices analog i/o group number of capacitive sensing channels stm32f373cx stm32f373rx stm32f373vx g1 3 3 3 g2 2 3 3 g3 1 3 3 g4 3 3 3 g5 3 3 3 g6 2 2 3 g7 0 0 3 g8 0 0 3 number of capacitive sensing channels 14 17 24 table 3. capacitive sensing gpios avai lable on stm32f373xx devices (continued) group capacitive sensing signal name pin name group capacitive sensing signal name pin name
docid022691 rev 5 21/136 stm32f373xx functional overview 47 3.17 timers and watchdogs the stm32f373xx includes two 32-bit and nine 16-bit general-purpose timers, three basic timers, two watchdog timers and a systick time r. the table below compares the features of the advanced control, general purpose and basic timers. table 5. timer feature comparison timer type timer counter resolution counter type prescaler factor dma request generation capture/ compare channels complemen- tary outputs general- purpose tim2 tim5 32-bit up, down, up/down any integer between 1 and 65536 yes 4 0 general- purpose tim3, tim4, tim19 16-bit up, down, up/down any integer between 1 and 65536 yes 4 0 general- purpose tim12 16-bit up any integer between 1 and 65536 no 2 0 general- purpose tim15 16-bit up any integer between 1 and 65536 yes 2 1 general- purpose tim13, tim14 16-bit up any integer between 1 and 65536 no 1 0 general- purpose tim16, tim17 16-bit up any integer between 1 and 65536 yes 1 1 basic tim6, tim7, tim18 16-bit up any integer between 1 and 65536 yes 0 0
functional overview stm32f373xx 22/136 docid022691 rev 5 3.17.1 general-purpose timers (tim2 to tim5, tim12 to tim17, tim19) there are eleven synchronizable general-purpose timers embedded in the stm32f373xx (see table 5 for differences). each general-purpose timer can be used to generate pwm outputs, or act as a simple time base. ? tim2, 3, 4, 5 and 19 these five timers are full-featured general-purpose timers: ? tim2 and tim5 have 32-bit auto-reload up/downcounters and 32-bit prescalers ? tim3, 4, and 19 have 16-bit auto-reload up/downcounters and 16-bit prescalers these timers all feature 4 independent chan nels for input capture/output compare, pwm or one-pulse mode output. they can work together, or with the other general- purpose timers via the timer link featur e for synchronization or event chaining. the counters can be frozen in debug mode. all have independent dma request generat ion and support quadrature encoders. ? tim12, 13, 14, 15, 16, 17 these six timers general-purpose timers with mid-range features: they have 16-bit auto-reload upcounters and 16-bit prescalers. ? tim12 has 2 channels ? tim13 and tim14 have 1 channel ? tim15 has 2 channels and 1 complementary channel ? tim16 and tim17 have 1 channel and 1 complementary channel all channels can be used for input capture/output compare, pwm or one-pulse mode output. the timers can work together via the timer link feature for synchronization or event chaining. the timers have independent dma request generation. the counters can be frozen in debug mode. 3.17.2 basic timers (tim6, tim7, tim18) these timers are mainly used for dac trigge r generation. they can also be used as a generic 16-bit time base.
docid022691 rev 5 23/136 stm32f373xx functional overview 47 3.17.3 independent watchdog (iwdg) the independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. it is clocked from an independent 40 khz internal rc and as it operates independently from the main clock, it can operate in stop and standb y modes. it can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. it is hardware or software configurable through the option bytes. the counter can be frozen in debug mode. 3.17.4 system window watchdog (wwdg) the system window watchdog is based on a 7-bit downcounter that can be set as free running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the apb1 clock (pcl k1) derived from the main cloc k. it has an early warning interrupt capability and the counter can be frozen in debug mode. 3.17.5 systick timer this timer is dedicated to real-time operating systems, but could also be used as a standard down counter. it features: ? a 24-bit down counter ? autoreload capability ? maskable system interrupt generation when the counter reaches 0 ? programmable clock source 3.18 real-time clock (rtc ) and backup registers the rtc and the backup registers are supplied through a switch that takes power either from v dd supply when present or through the v bat pin. the backup registers are thirty two 32-bit registers used to store 128 bytes of user application data. they are not reset by a system or power re set, and they are not reset when the device wakes up from the standby mode.
functional overview stm32f373xx 24/136 docid022691 rev 5 the rtc is an independent bcd timer/counter. its main features are the following: ? calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in bcd (binary-coded decimal) format. ? automatic correction for 28th, 29th (lea p year), 30th and 31st day of the month. ? 2 programmable alarms with wake up from stop and standby mode capability. ? periodic wakeup unit with programmable resolution and period. ? on-the-fly correction from 1 to 32767 rtc clock pulses. this can be used to synchronize it with a master clock. ? digital calibration circuit with 1 ppm resolu tion, to compensate for quartz crystal inaccuracy. ? 3 anti-tamper detection pins with programma ble filter. the mcu can be woken up from stop and standby modes on tamper event detection. ? timestamp feature which can be used to save the calendar content. this function can triggered by an event on the timestamp pin, or by a tamper event. the mcu can be woken up from stop and standby modes on timestamp event detection. ? reference clock detection: a more precise se cond source clock (50 or 60 hz) can be used to enhance the calendar precision. the rtc clock sources can be: ? a 32.768 khz external crystal ? a resonator or oscillator ? the internal low-power rc oscillator (typical frequency of 40 khz) ? the high-speed external clock divided by 32 3.19 inter-integrated circuit interface (i 2 c) two i 2 c bus interfaces can operate in multim aster and slave modes. they can support standard (up to 100 khz), fast (up to 400 khz) and fast mode + (up to 1 mhz) modes with 20 ma output drive. they support 7-bit and 10- bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). they also include programmable analog and digital noise filters. in addition, they provide hard ware support for sm bus 2.0 and pmbus 1.1: arp capability, host notify protocol, hardware crc (pec) gene ration/verification, ti meout verifications and table 6. comparison of i 2 c analog and digital filters analog filter digital filter pulse width of suppressed spikes 50 ns programmable length from 1 to 15 i 2 c peripheral clocks benefits available in stop mode 1. extra filtering capability vs. standard requirements. 2. stable length drawbacks variations depending on temperature, voltage, process wakeup from stop on address match is not available when digital filter is enabled
docid022691 rev 5 25/136 stm32f373xx functional overview 47 alert protocol management. they also have a clock domain independent from the cpu clock, allowing the application to wake up the mcu from stop mode on address match. the i 2 c interfaces can be served by the dma controller refer to table 7 for the differences be tween i2c1 and i2c2. 3.20 universal synchronous/asynch ronous receiver transmitter (usart) the stm32f373xx embeds three universal synchronous/asynchronous receiver transmitters (usart1, usart2 and usart3). all usarts interfaces are able to communicate at speeds of up to 9 mbit/s. they provide hardware management of the ct s and rts signals, they support irda sir endec, the multiprocessor communication mode, the single-wire half-duplex communication mode, smartcard mode (iso/iec 7816 compliant), autobaudrate feature and have lin master/slave capability. the u sart interfaces can be served by the dma controller. refer to table 8 for the features of usart1, usart2 and usart3. table 7. stm32f373xx i 2 c implementation i 2 c features (1) 1. x = supported. i2c1 i2c2 7-bit addressing mode x x 10-bit addressing mode x x standard mode (up to 100 kbit/s) x x fast mode (up to 400 kbit/s) x x fast mode plus with 20ma output drive i/os (up to 1 mbit/s) x x independent clock x x smbus x x wakeup from stop x x table 8. stm32f373xx usart implementation usart modes/features (1) usart1 usart2 usart3 hardware flow control for modem x x x continuous communication using dma x x x multiprocessor communication x x x synchronous mode x x x smartcard mode x x x single-wire half-duplex communication x x x irda sir endec block x x x lin mode x x x
functional overview stm32f373xx 26/136 docid022691 rev 5 3.21 serial peripheral interface (spi)/inter-integrated sound interfaces (i 2 s) three spis are able to communicate at up to 18 mbits/s in slave and master modes in full- duplex and half-duplex communication modes. the 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. the hardware crc generation/verification support s basic sd card/mmc modes. the spis can be served by the dma controller. three standard i 2 s interfaces (multiplexed with spi1, spi 2 and spi3) are available, that can be operated in master or slave mode. these in terfaces can be configured to operate with 16/32 bit resolution, as input or output chann els. audio sampling frequencies from 8 khz up to 192 khz are supported. when either or both of the i 2 s interfaces is/are configured in master mode, the master clock can be output to the external dac/codec at 256 times the sampling frequency. all i2s interfaces can operate in half-duplex mode only. refer to table 9 for the features between spi1, spi2 and spi3. dual clock domain and wakeup from stop mode x x x receiver timeout interrupt x x x modbus communication x x x auto baud rate detection x x x driver enable x x x 1. x = supported. table 8. stm32f373xx usart implementation (continued) usart modes/features (1) usart1 usart2 usart3 table 9. stm32f373xx spi/i2s implementation spi features (1) 1. x = supported. spi1 spi2 spi3 hardware crc calculation x x x rx/tx fifo x x x nss pulse mode x x x i2s mode xxx ti mode xxx i2s full-duplex mode
docid022691 rev 5 27/136 stm32f373xx functional overview 47 3.22 high-definition multimedia interface (hdmi) - consumer electronics control (cec) the device embeds a hdmi-cec controller that provides hardware support for the consumer electronics control (cec) protoc ol (supplement 1 to the hdmi standard). this protocol provides high-level control functions between all audiovisual products in an environment. it is specified to operate at low speeds with minimum processing and memory overhead. it has a clock domain independent from the cpu clock, allowing the hdmi_cec controller to wakeup the mcu from stop mode on data reception. 3.23 controller area network (can) the can is compliant with specif ications 2.0a and b (active) wit h a bit rate up to 1 mbit/s. it can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. it has three transmit mailboxes, two receive fifos with 3 stages and 14 scalable filter banks. 3.24 universal serial bus (usb) the stm32f373xx embeds an usb device peripheral compatible with the usb full-speed 12 mbs. the usb interface implements a full-sp eed (12 mbit/s) function interface. it has software-configurable endpoint setting and suspend/resume support. the dedicated 48 mhz clock is generated from the internal main pll (the clock source must use a hse crystal oscillator). 3.25 serial wire jtag debug port (swj-dp) the arm swj-dp interface is embedded, and is a combined jtag and serial wire debug port that enables either a serial wire debug or a jtag probe to be connected to the target. the jtag tms and tck pins are shared re spectively with swdio and swclk and a specific sequence on the tms pin is us ed to switch between jtag-dp and sw-dp.
functional overview stm32f373xx 28/136 docid022691 rev 5 3.26 embedded trace macrocell? the arm embedded trace ma crocell provides a greater visib ility of the instruction and data flow inside the cpu core by streaming compressed data at a very high rate from the stm32f373xx through a small number of etm pi ns to an external hardware trace port analyzer (tpa) device. the tpa is connected to a host computer using usb, ethernet, or any other high-speed channel. real-time instru ction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. tpa hardware is commercially available from co mmon development tool vendors. it operates with third party debugger software tools.
docid022691 rev 5 29/136 stm32f373xx pinouts and pin description 47 4 pinouts and pin description figure 2. stm32f373xx lqfp48 pinout 1. the above figure shows the package top view.                                               9%$7 3&26&b,1 3&26&b287 1567 966$95() 9''$95() 3$ 3$ 3$ 9''b 966b 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ 3) 3) 3$ 3$ 3$ 3$ 3$  3$  3' 3% 3% 95()6' 3$  3$  3$  3$ 9''b 3% 3% 3% 3( 9666'95()6' 3( 9''6' 3)26&b,1 3)26&b287 3&   069 ,1&0
pinouts and pin description stm32f373xx 30/136 docid022691 rev 5 figure 3. stm32f373xx lqfp64 pinout 1. the above figure shows the package top view.                                                                 9%$7 3&26&b,1 3&26&b287 1567 3& 3& 3& 3& 966$95() 9''$ 3$ 3$ 3$ 9''b 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 3) 3) 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3' 3% 3% 95()6' 3$ 95() 9''b 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3( 3)26&b287 3)26&b,1 3& 966b 3( 9666'95()6' 9''6' ,1&0 -36
docid022691 rev 5 31/136 stm32f373xx pinouts and pin description 47 figure 4. stm32f373xx lqfp100 pinout                                                                            0% 0% 0% 0% 0% 6"!4 0# /3#?). 0# /3#?/54 0& 0& 0& /3#?). .234 0# 0# 0# 0# 0& 633!62%& 62%& 6$$! 0!  0!  0!  6$$? 633? 0& 0! 0! 0!   0! 0! 0!  0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 62%&3$ 6$$3$ 0!  0& 6$$? 0!  0!  0!  0!  0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 62%&3$ 6333$ 6$$3$ 6$$? 633? 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0!                          -36 ,1&0 0# 0& /3#?/54
pinouts and pin description stm32f373xx 32/136 docid022691 rev 5 figure 5. stm32f373xx bga100 ballout 1. the above figure shows the package top view. -36 ! " % $ # & ' ( * + , - 0% 0# 0# 0% 0# 0& 633! 62%& 62%& 6$$! 0% 0% 0% 0% 6"!4 0& 0& .234 0# 0# 0!  0!  0" 0% 0" 633? 0& 6$$? 0# 0!  0!  0!  "//4 0" 6$$? 0!  0!  0!  0$ 0" 0" 0# 0# 0" 0$ 0$ 0" 0" 0" 0$ 0% 0% 0" 0$ 0$ 0$ 0% 0% 0! 0$ 0$ 0$ 0% 0% 0! 0# 0# 0# 0!  0$ 0$ 0" 0" 0% 0! 0# 0& 0!  0# 0$ 0$ 0" 62%&3$ 0% 633? 6$$? 0! 0! 0! 0# 0# 0$ 0$ 62%&3$ 6$$3$ 0% 6333$ 6$$3$             0# 0& 0&
docid022691 rev 5 33/136 stm32f373xx pinouts and pin description 47 table 10. legend/abbreviations used in the pinout table name abbreviation definition pin name unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name pin type s supply pin i input only pin i/o input / output pin i/o structure ft 5 v tolerant i/o ftf 5 v tolerant i/o, fm+ capable tta 3.3 v tolerant i/o directly connected to adc tc standard 3.3 v i/o b dedicated boot0 pin rst bidirectional reset pin with embedded weak pull-up resistor notes unless otherwise specified by a note, all i/os are set as floating inputs during and after reset pin functions alternate functions functions selected through gpiox_afr registers additional functions functions directly selected/enabled through peripheral registers table 11. stm32f373xx pin definitions pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions 1 b2 pe2 i/o ft (1) tsc_g7_io1, traceclk 2 a1 pe3 i/o ft (1) tsc_g7_io2, traced0 3 b1 pe4 i/o ft (1) tsc_g7_io3, traced1 4 c2 pe5 i/o ft (1) tsc_g7_io4, traced2 5 d2 pe6 i/o ft (1) traced3 wkup3, rtc_tamper3 6 e2 1 1 vbat s backup power supply 7c122 pc13 i/otc wkup2, alarm_out, calib_out, timestamp, rtc_tamper1
pinouts and pin description stm32f373xx 34/136 docid022691 rev 5 8d133 pc14 - osc32_in i/o tc osc32_in 9e144 pc15 - osc32_out i/o tc osc32_out 10 f2 pf9 i/o ft (1) tim14_ch1 11 g2 pf10 i/o ft (1) 12 f1 5 5 pf0 - osc_in i/o ftf i2c2_sda osc_in 13 g1 6 6 pf1 - osc_out i/o ftf i2c2_scl osc_out 14 h2 7 7 nrst i/o rst device reset input / internal reset output (active low) 15 h1 8 pc0 i/o tta (1) tim5_ch1_etr adc_in10 16 j2 9 pc1 i/o tta (1) tim5_ch2 adcin11 17 j3 10 pc2 i/o tta (1) spi2_miso/i2s2_mck, tim5_ch3 adc_in12 18 k2 11 pc3 i/o tta (1) spi2_mosi/i2s2_sd, tim5_ch4 adc_in13 19 j1 pf2 i/o ft (1) i2c2_smba 20 k1 12 8 vssa/vref- s analog ground 9 vdda/vref + s (1) analog power supply / reference voltage for adc, comp, dac 21 m1 13 vdda s (1) analog power supply 22 l1 17 vref+ s (1) reference voltage for adc, comp, dac 23 l2 14 10 pa0 i/o tta usart2_cts, tim2_ch1_etr, tim5_ch1_etr, tim19_ch1, tsc_g1_io1, comp1_out rtc_ tamper2, wkup1, adc_in0, comp1_inm 24 m2 15 11 pa1 i/o tta spi3_sck/i2s3_ck, usart2_rts, tim2_ch2, tim15_ch1n, tim5_ch2, tim19_ch2, tsc_g1_io2, rtc_refin adc_in1, comp1_inp table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
docid022691 rev 5 35/136 stm32f373xx pinouts and pin description 47 25 k3 16 12 pa2 i/o tta comp2_out, spi3_miso/i2s3_mck, usart2_tx, tim2_ch3, tim15_ch1, tim5_ch3, tim19_ch3, tsc_g1_io3 adc_in2, comp2_inm 26 l3 18 13 pa3 i/o tta spi3_mosi/i2s3_sd, usart2_rx, tim2_ch4, tim15_ch2, tim5_ch4, tim19_ch4, tsc_g1_io4 adc_in3, comp2_inp 27 e3 pf4 i/o ft (1) 28 h3 19 17 vdd_2 s digital power supply 29 m3 20 14 pa4 i/o tta spi1_nss/i2s1_ws, spi3_nss/i2s3_ws, usart2_ck, tim3_ch2, tim12_ch1, tsc_g2_io1, adc_in4, dac1_out1 30 k4 21 15 pa5 i/o tta spi1_sck/i2s1_ck, cec, tim2_ch1_etr, tim14_ch1, tim12_ch2, tsc_g2_io2 adc_in5, dac1_out2 31 l4 22 16 pa6 i/o tta spi1_miso/i2s1_mck, comp1_out, tim3_ch1, tim13_ch1, tim16_ch1, tsc_g2_io3 adc_in6, dac2_out1, 32 m4 23 pa7 i/o tta (1) tsc_g2_io4, tim14_ch1, spi1_mosi/i2s1_sd, tim17_ch1, tim3_ch2, comp2_out adc_in7 33 k5 24 pc4 i/o tta (1) tim13_ch1, tsc_g3_io1, usart1_tx adc_in14 34 l5 25 pc5 i/o tta (1) tsc_g3_io2, usart1_rx adc_in15 35 m5 26 18 pb0 i/o tta spi1_mosi/i2s1_sd, tim3_ch3, tsc_g3_io3, tim3_ch2 adc_in8, sdadc1_ain6p 36 m6 27 19 pb1 i/o tta tim3_ch4, tsc_g3_io4 adc_in9, sdadc1_ain5p, sdadc1_ain6m 37 l6 28 20 pb2 i/o tc (2) sdadc1_ain4p, sdadc2_ain6p table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
pinouts and pin description stm32f373xx 36/136 docid022691 rev 5 38 m7 pe7 i/o tc (2) (1) sdadc1_ain3p, sdadc1_ain4m, sdadc2_ain5p, sdadc2_ain6m 39 l7 29 21 pe8 i/o tc (2) sdadc1_ain8p, sdadc2_ain8p 40 m8 30 22 pe9 i/o tc (2) sdadc1_ain7p, sdadc1_ain8m, sdadc2_ain7p, sdadc2_ain8m 41 l8 pe10 i/o tc (2) (1) sdadc1_ain2p 42 m9 pe11 i/o tc (2) (1) sdadc1_ain1p, sdadc1_ain2m, sdadc2_ain4p 43 l9 pe12 i/o tc (2) (1) sdadc1_ain0p, sdadc2_ain3p, sdadc2_ain4m 44 m10 pe13 i/o tc (2) (1) sdadc1_ain0m , sdadc2_ain2p 45 m11 pe14 i/o tc (2) (1) sdadc2_ain1p, sdadc2_ain2m 46 m12 pe15 i/o tc (2) (1) usart3_rx sdadc2_ain0p 47 l10 pb10 i/o tc (2) (1) spi2_sck/i2s2_ck, usart3_tx, cec, tsc_sync, tim2_ch3 sdadc2_ain0m 48 l11 vrefsd- s (1) external reference voltage for sdadc1, sdadc2, sdadc3 (negative input) 49 f12 vsssd s (1) sdadc1, sdadc2, sdadc3 ground 31 23 vsssd/ vrefsd- s sdadc1, sdadc2, sdadc3 gro und / external reference voltage for sdadc1, sdadc2, sdadc3 (negative input) 50 g12 vddsd12 s (1) sdadc1 and sdadc2 power supply 32 24 vddsd s sdadc1, sdadc2, sdadc3 power supply 51 l12 vddsd3 s (1) sdadc3 power supply table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
docid022691 rev 5 37/136 stm32f373xx pinouts and pin description 47 52 k12 33 25 vrefsd+ s external reference voltage for sdadc1, sdadc2, sdadc3 (positive input) 53 k11 34 26 pb14 i/o tc (3) spi2_miso/i2s2_mck, usart3_rts, tim15_ch1, tim12_ch1, tsc_g6_io1 sdadc3_ain8p 54 k10 35 27 pb15 i/o tc (3) spi2_mosi/i2s2_sd, tim15_ch1n, tim15_ch2, tim12_ch2, tsc_g6_io2, rtc_refin sdadc3_ain7p, sdadc3_ain8m 55 k9 36 28 pd8 i/o tc (3) spi2_sck/i2s2_ck, usart3_tx, tsc_g6_io3 sdadc3_ain6p 56 k8 pd9 i/o tc (3) (1) usart3_rx, tsc_g6_io4 sdadc3_ain5p, sdadc3_ain6m 57 j12 pd10 i/o tc (3) (1) usart3_ck sdadc3_ain4p 58 j11 pd11 i/o tc (3) (1) usart3_cts sdadc3_ain3p, sdadc3_ain4m 59 j10 pd12 i/o tc (3) (1) usart3_rts, tim4_ch1, tsc_g8_io1 sdadc3_ain2p 60 h12 pd13 i/o tc (3) (1) tim4_ch2, tsc_g8_io2 sdadc3_ain1p, sdadc3_ain2m 61 h11 pd14 i/o tc (3) (1) tim4_ch3, tsc_g8_io3 sdadc3_ain0p 62 h10 pd15 i/o tc (3) (1) tim4_ch4, tsc_g8_io4 sdadc3_ain0m 63 e12 37 pc6 i/o ft (1) tim3_ch1, spi1_nss/i2s1_ws 64 e11 38 pc7 i/o ft (1) tim3_ch2, spi1_sck/i2s1_ck, 65 e10 39 pc8 i/o ft (1) spi1_miso/i2s1_mck, tim3_ch3 66 d12 40 pc9 i/o ft (1) spi1_mosi/i2s1_sd, tim3_ch4 table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
pinouts and pin description stm32f373xx 38/136 docid022691 rev 5 67 d11 41 29 pa8 i/o ft spi2_sck/i2s2_ck, i2c2_smba, usart1_ck, tim4_etr, tim5_ch1_etr, mco 68 d10 42 30 pa9 i/o ftf spi2_miso/i2s2_mck, i2c2_scl, usart1_tx, tim2_ch3, tim15_bkin, tim13_ch1, tsc_g4_io1 69 c12 43 31 pa10 i/o ftf spi2_mosi/i2s2_sd, i2c2_sda, usart1_rx, tim2_ch4, tim17_bkin, tim14_ch1, tsc_g4_io2 70 b12 44 32 pa11 i/o ft spi2_nss/i2s2_ws, spi1_nss/i2s1_ws, usart1_cts, can_rx, tim4_ch1, usb_dm, tim5_ch2, comp1_out 71 a12 45 33 pa12 i/o ft spi1_sck/i2s1_ck, usart1_rts, can_tx, usb_dp, tim16_ch1, tim4_ch2, tim5_ch3, comp2_out 72 a11 46 34 pa13 i/o ft spi1_miso/i2s1_mck, usart3_cts, ir_out, tim16_ch1n, tim4_ch3, tim5_ch4, tsc_g4_io3, swdio-jtms 73 c11 47 35 pf6 i/o ftf spi1_mosi/i2s1_sd, usart3_rts, tim4_ch4, i2c2_scl 74 f11 vss_3 s (1) ground 75 g11 vdd_3 s (1) digital power supply 48 36 pf7 i/o ftf i2c2_sda, usart2_ck 76 a10 49 37 pa14 i/o ftf i2c1_sda, tim12_ch1, tsc_g4_io4, swclk-jtck table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
docid022691 rev 5 39/136 stm32f373xx pinouts and pin description 47 77 a9 50 38 pa15 i/o ftf spi1_nss/i2s1_ws, spi3_nss/i2s3_ws, i2c1_scl, tim2_ch1_etr, tim12_ch2, tsc_sync, jtdi 78 b11 51 pc10 i/o ft (1) spi3_sck/i2s3_ck, usart3_tx, tim19_ch1 79 c10 52 pc11 i/o ft (1) spi3_miso/i2s3_mck, usart3_rx, tim19_ch2 80 b10 53 pc12 i/o ft (1) spi3_mosi/i2s3_sd, usart3_ck, tim19_ch3 81 c9 pd0 i/o ft (1) can_rx, tim19_ch4 82 b9 pd1 i/o ft (1) can_tx, tim19_etr 83 c8 54 pd2 i/o ft (1) tim3_etr 84 b8 pd3 i/o ft (1) spi2_miso/i2s2_mck, usart2_cts 85 b7 pd4 i/o ft (1) spi2_mosi/i2s2_sd, usart2_rts 86 a6 pd5 i/o ft (1) usart2_tx 87 b6 pd6 i/o ft (1) spi2_nss/i2s2_ws, usart2_rx 88 a5 pd7 i/o ft (1) spi2_sck/i2s2_ck, usart2_ck 89 a8 55 39 pb3 i/o ft spi1_sck/i2s1_ck, spi3_sck/i2s3_ck, usart2_tx, tim2_ch2, tim3_etr, tim4_etr, tim13_ch1, tsc_g5_io1, jtdo-traceswo 90 a7 56 40 pb4 i/o ft spi1_miso/i2s1_mck, spi3_miso/i2s3_mck, usart2_rx, tim16_ch1, tim3_ch1, tim17_bkin, tim15_ch1n, tsc_g5_io2, njtrst table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
pinouts and pin description stm32f373xx 40/136 docid022691 rev 5 91 c5 57 41 pb5 i/o ft spi1_mosi/i2s1_sd, spi3_mosi/i2s3_sd, i2c1_smbal, usart2_ck, tim16_bkin, tim3_ch2, tim17_ch1, tim19_etr 92 b5 58 42 pb6 i/o ftf i2c1_scl, usart1_tx, tim16_ch1n, tim3_ch3, tim4_ch1, tim19_ch1, tim15_ch1, tsc_g5_io3 93 b4 59 43 pb7 i/o ftf i2c1_sda, usart1_rx, tim17_ch1n, tim3_ch4, tim4_ch2, tim19_ch2, tim15_ch2, tsc_g5_io4 94 a4 60 44 boot0 i b boot memory selection 95 a3 61 45 pb8 i/o ftf spi2_sck/i2s2_ck, i2c1_scl, usart3_tx, can_rx, cec, tim16_ch1, tim4_ch3, tim19_ch3, comp1_out, tsc_sync 96 b3 62 46 pb9 i/o ftf spi2_nss/i2s2_ws, i2c1_sda, usart3_rx, can_tx, ir_out, tim17_ch1, tim4_ch4, tim19_ch4, comp2_out 97 c3 pe0 i/o ft (1) usart1_tx, tim4_etr 98 a2 pe1 i/o ft (1) usart1_rx 99 d3 63 47 vss_1 s ground 100 c4 64 48 vdd_1 s digital power supply 1. when using the small packages (48 and 64 pin packages), the gpio pins which are not present on these packages, must not be configured in analog mode. 2. these pins are powered by vddsd12. 3. these pins are powered by vddsd3. table 11. stm32f373xx pin definitions (continued) pin numbers pin name (function after reset) pin type i/o structure notes pin functions lqfp100 bga100 lqfp64 lqfp48 alternate function ad ditional functions
stm32f373xx pinouts and pin description docid022691 rev 5 41/136 table 12. alternate functions for port pa pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af14 af15 pa0 tim2_ ch1_ etr tim5_ ch1_ etr tsc_ g1_io1 usart2_cts comp1 _out tim19 _ch1 event out pa1 rtc_ refin tim2_ ch2 tim5_ ch2 tsc_ g1_io2 spi3_sck/ i2s3_ck usart2_rts tim15_ ch1n tim19 _ch2 event out pa2 tim2_ ch3 tim5_ ch3 tsc_ g1_io3 spi3_miso/ i2s3_mck usart2_tx comp2 _out tim15_ ch1 tim19 _ch3 event out pa3 tim2_ ch4 tim5_ ch4 tsc_ g1_io4 spi3_mosi /i2s3_sd usart2_rx tim15_ ch2 tim19 _ch4 event out pa4 tim3_ ch2 tsc_ g2_io1 spi1_nss/ i2s1_ws spi3_nss/ i2s3_ws usart2_ck tim12 _ch1 event out pa5 tim2_ ch1_ etr tsc_ g2_io2 spi1_sck/ i2s1_ck cec tim14_ ch1 tim12 _ch2 event out pa6 tim16_ ch1 tim3_ ch1 tsc_ g2_io3 spi1_miso /i2s1_mck comp1 _out tim13_ ch1 event out pa7 tim17_ ch1 tim3_ ch2 tsc_ g2_io4 spi1_mosi /i2s1_sd comp2 _out tim14_ ch1 event out pa8 mco tim5_ ch1_ etr i2c2_ smba spi2_sck/ i2s2_ck usart1_ck tim4_ etr event out pa9 tim13 _ch1 tsc_ g4_io1 i2c2_ scl spi2_miso /i2s2_mck usart1_tx tim15_ bkin tim2_ ch3 event out pa10 tim17_ bkin tsc_ g4_io2 i2c2_ sda spi2_mosi /i2s2_sd usart1_rx tim14_ ch1 tim2_ ch4 event out pa11 tim5_ ch2 spi2_nss/ i2s2_ws spi1_nss/ i2s1_ws usart1_cts comp1 _out can_ rx tim4_ ch1 usb_ dm event out pa12 tim16_ ch1 tim5_ ch3 spi1_sck/ i2s1_ck usart1_rts comp2 _out can_tx tim4_ ch2 usb_ dp event out
stm32f373xx pinouts and pin description docid022691 rev 5 42/136 pa13 swdio -jtms tim16_ ch1n tim5_ ch4 tsc_ g4_io3 ir-out spi1_miso /i2s1_mck usart3_cts tim4_ ch3 event out pa14 swclk -jtck tsc_ g4_io4 i2c1_ sda tim12 _ch1 event out pa15 jtdi tim2_ ch1_etr tsc_ sync i2c1_ scl spi1_nss/ i2s1_ws spi3_nss/ i2s3_ws tim12 _ch2 event out table 12. alternate functions for port pa (continued) pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af14 af15
pinouts and pin description stm32f373xx 43/136 docid022691 rev 5 table 13. alternate functions for port pb pin name af0 af1 af2 af3 af4 af5 af6 af7 af8 af9 af10 af11 af15 pb0 tim3_ch3 tsc_ g3_io3 spi_mosi/ i2s1_sd tim3_ ch2 eventout pb1 tim3_ch4 tsc_ g3_io4 eventout pb2 eventout pb3 jtdo- traceswo tim2_ ch2 tim4_etr tsc_ g5_io1 spi1_sck/ i2s1_ck spi3_sck/ i2s3_ck usart2_tx tim13_ ch1 tim3_ etr eventout pb4 njtrst tim16_ ch1 tim3_ch1 tsc_ g5_io2 spi1_miso /i2s1_mck spi3_miso/ i2s3_mck usart2_rx tim15_ ch1n tim17 _bkin eventout pb5 tim16_ bkin tim3_ch2 i2c1_ smba spi1_mosi /i2s1_sd spi3_mosi /i2s3_sd usart2_ck tim17 _ch1 tim19 _etr eventout pb6 tim16_ ch1n tim4_ch1 tsc_ g5_io3 i2c1_ scl usart1_tx tim15_ ch1 tim3_ ch3 tim19 _ch1 eventout pb7 tim17_ ch1n tim4_ch2 tsc_ g5_io4 i2c1_ sda usart1_rx tim15_ ch2 tim3_ ch4 tim19 _ch2 eventout pb8 tim16_ ch1 tim4_ch3 tsc_ sync i2c1_ scl spi2_sck/ i2s2_ck cec usart3_tx comp1 _out can_ rx tim19 _ch3 eventout pb9 tim17_ ch1 tim4_ch4 i2c1_ sda spi2_nss/ i2s2_ws ir-out usart3_rx comp2 _out can_ tx tim19 _ch4 eventout pb10 tim2_ ch3 tsc_ synch spi2_sck/ i2s2_ck cec usart3_tx eventout pb14 tim15_ ch1 tsc_ g6_io1 spi2_miso /i2s2_mck usart3_rts tim12_ ch1 eventout pb15 rtc_refin tim15_ ch2 tim15_ ch1n tsc_ g6_io2 spi2_mosi /i2s2_sd tim12_ ch2 eventout
stm32f373xx pinouts and pin description docid022691 rev 5 44/136 table 14. alternate functions for port pc pin name af0 af1 af2 af3 af4 af5 af6 af7 pc0 eventout tim5_ch1_etr pc1 eventout tim5_ch2 pc2 eventout tim5_ch3 spi2_miso/i2s2_mck pc3 eventout tim5_ch4 spi2_mosi/i2s2_sd pc4 eventout tim13_ch1 tsc_g3_io1 usart1_tx pc5 eventout tsc_g3_io2 usart1_rx pc6 eventout tim3_ch1 spi1_nss/i2s1_ws pc7 eventout tim3_ch2 spi1_sck/i2s1_ck pc8 eventout tim3_ch3 spi1_miso/i2s1_mck pc9 eventout tim3_ch4 spi1_mosi/i2s1_sd pc10 eventout tim19_ch1 spi3_ sck/i2s3_ck usart3_tx pc11 eventout tim19_ch2 spi3_miso/i2s3_mck usart3_rx pc12 eventout tim19_ch3 spi3_mosi/i2s3_sd usart3_ck pc13 pc14 pc15
pinouts and pin description stm32f373xx 45/136 docid022691 rev 5 table 15. alternate functions for port pd pin name af0 af1 af2 af3 af4 af5 af6 af7 pd0 eventout tim19_ch4 can_rx pd1 eventout tim19_etr can_tx pd2 eventout tim3_etr pd3 eventout spi2_miso/i2s2_mck usart2_cts pd4 eventout spi2_mosi/i2s2_sd usart2_rts pd5 eventout usart2_tx pd6 eventout spi2_nss/i2s2_ws usart2_rx pd7 eventout spi2_sck/i2s2_ck usart2_ck pd8 eventout tsc_g6_io3 spi2_sck/i2s2_ck usart3_tx pd9 eventout tsc_g6_io4 usart3_rx pd10 eventout usart3_ck pd11 eventout usart3_cts pd12 eventout tim4_ch1 tsc_g8_io1 usart3_rts pd13 eventout tim4_ch2 tsc_g8_io2 pd14 eventout tim4_ch3 tsc_g8_io3 pd15 eventout tim4_ch4 tsc_g8_io4
stm32f373xx pinouts and pin description docid022691 rev 5 46/136 table 16. alternate functions for port pe pin name af0 af1 af2 af3 af4 af5 af6 af7 pe0 eventout tim4_etr usart1_tx pe1 eventout usart1_rx pe2 traceclk eventout tsc_g7_io1 pe3 traced0 eventout tsc_g7_io2 pe4 traced1 eventout tsc_g7_io3 pe5 traced2 eventout tsc_g7_io4 pe6 traced3 eventout pe7 eventout pe8 eventout pe9 eventout pe10 eventout pe11 eventout pe12 eventout pe13 eventout pe14 eventout pe15 eventout usart3_rx
pinouts and pin description stm32f373xx 47/136 docid022691 rev 5 table 17. alternate functions for port pf pin name af0 af1 af2 af3 af4 af5 af6 af7 pf0 i2c2_sda pf1 i2c2_scl pf2 eventout i2c2_smba pf4 eventout pf6 eventout tim4_ch4 i2c2_scl spi1_mosi/i2s1_sd usart3_rts pf7 eventout i2c2_sda usart2_ck pf9 eventout tim14_ch1 pf10 eventout
memory mapping stm32f373xx 48/136 docid022691 rev 5 5 memory mapping figure 6. stm32f373xx memory map [)))))))) [( [& [$ [ [ [ [ [         &ruwh[0 lqwhuqdo shulskhudov 3hulskhudov 65$0 &2'( 2swlrqe\whv 6\vwhpphpru\ )odvkphpru\ )odvkv\vwhpphpru\ ru65$0ghshqglqj rq%227frqiljxudwlrq $+% $+% $3% $3% [)) [ [)) [ [& [ [$ [ [))))))) [)))) [)))' [ [ [ [ 5hvhuyhg 06y9 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg
docid022691 rev 5 49/136 stm32f373xx memory mapping 51 table 18. stm32f373xx peripheral register boundary addresses bus boundary address size peripheral ahb2 0x4800 1400 - 0x4800 17ff 1kb gpiof 0x4800 1000 - 0x4800 13ff 1kb gpioe 0x4800 0c00 - 0x4800 0fff 1kb gpiod 0x4800 0800 - 0x4800 0bff 1kb gpioc 0x4800 0400 - 0x4800 07ff 1kb gpiob 0x4800 0000 - 0x4800 03ff 1kb gpioa 0x4002 4400 - 0x47ff ffff ~128 mb reserved ahb1 0x4002 4000 - 0x4002 43ff 1 kb tsc 0x4002 3400 - 0x4002 3fff 3 kb reserved 0x4002 3000 - 0x4002 33ff 1 kb crc 0x4002 2400 - 0x4002 2fff 3 kb reserved 0x4002 2000 - 0x4002 23ff 1 kb flash memory interface 0x4002 1400 - 0x4002 1fff 3kb reserved 0x4002 1000 - 0x4002 13ff 1 kb rcc 0x4002 0800- 0x4002 0fff 2kb reserved 0x4002 0400 - 0x4002 07ff 1 kb dma2 0x4002 0000 - 0x4002 03ff 1 kb dma1 0x4001 6c00 - 0x4001 ffff 37 kb reserved
memory mapping stm32f373xx 50/136 docid022691 rev 5 apb2 0x4001 6800 - 0x4001 6bff 1 kb sdadc3 0x4001 6400 - 0x4001 67ff 1 kb sdadc2 0x4001 6000 - 0x4001 63ff 1 kb sdadc1 0x4001 5c00 - 0x4001 5fff 1 kb tim19 0x4001 4c00 - 0x4001 5bff 4kb reserved 0x4001 4800 - 0x4001 4bff 1 kb tim17 0x4001 4400 - 0x4001 47ff 1 kb tim16 0x4001 4000 - 0x4001 43ff 1 kb tim15 0x4001 3c00 - 0x4001 3fff 1kb reserved 0x4001 3800 - 0x4001 3bff 1 kb usart1 0x4001 3400 - 0x4001 37ff 1kb reserved 0x4001 3000 - 0x4001 33ff 1 kb spi1/i2s1 0x4001 2800 - 0x4001 2fff 1kb reserved 0x4001 2400 - 0x4001 27ff 1 kb adc 0x4001 0800 - 0x4001 23ff 7kb reserved 0x4001 0400 - 0x4001 07ff 1 kb exti 0x4001 0000 - 0x4001 03ff 1 kb syscfg + comp 0x4000 4000 - 0x4000 ffff 24 kb reserved apb1 0x4000 9c00 ? 0x4000 9fff 1 kb tim18 0x4000 9800 - 0x4000 9bff 1 kb dac2 0x4000 7c00 - 0x4000 97ff 8kb reserved 0x4000 7800 - 0x4000 7bff 1 kb cec 0x4000 7400 - 0x4000 77ff 1 kb dac1 0x4000 7000 - 0x4000 73ff 1 kb pwr 0x4000 6800 - 0x4000 6fff 2kb reserved 0x4000 6400 - 0x4000 67ff 1 kb can 0x4000 6000 - 0x4000 63ff 1 kb usb packet sram 0x4000 5c00 - 0x4000 5fff 1 kb usb fs table 18. stm32f373xx peripheral register boundary addresses (continued) bus boundary address size peripheral
docid022691 rev 5 51/136 stm32f373xx memory mapping 51 apb1 0x4000 5800 - 0x4000 5bff 1 kb i2c2 0x4000 5400 - 0x4000 57ff 1 kb i2c1 0x4000 4c00 - 0x4000 53ff 2kb reserved 0x4000 4800 - 0x4000 4bff 1 kb usart3 0x4000 4400 - 0x4000 47ff 1 kb usart2 0x4000 4000 - 0x4000 43ff 1kb reserved 0x4000 3c00 - 0x4000 3fff 1 kb spi3/i2s3 0x4000 3800 - 0x4000 3bff 1 kb spi2/i2s2 0x4000 3400 - 0x4000 37ff 1kb reserved 0x4000 3000 - 0x4000 33ff 1 kb iwdg 0x4000 2c00 - 0x4000 2fff 1 kb wwdg 0x4000 2800 - 0x4000 2bff 1 kb rtc 0x4000 2400 - 0x4000 27ff 1kb reserved 0x4000 2000 - 0x4000 23ff 1 kb tim14 0x4000 1c00 - 0x4000 1fff 1 kb tim13 0x4000 1800 - 0x4000 1bff 1 kb tim12 0x4000 1400 - 0x4000 17ff 1 kb tim7 0x4000 1000 - 0x4000 13ff 1 kb tim6 0x4000 0c00 - 0x4000 0fff 1 kb tim5 0x4000 0800 - 0x4000 0bff 1 kb tim4 0x4000 0400 - 0x4000 07ff 1 kb tim3 0x4000 0000 - 0x4000 03ff 1 kb tim2 table 18. stm32f373xx peripheral register boundary addresses (continued) bus boundary address size peripheral
electrical characteristics stm32f373xx 52/136 docid022691 rev 5 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = v dda = v ddsdx = 3.3 v. they are given only as design guidelines and are not tested. typical adc and sdadc accuracy values are dete rmined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2 ) . 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 7 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 8 . figure 7. pin loading conditions figure 8. pin input voltage 069 & s) 0&8slq 069 0&8slq 9 ,1
docid022691 rev 5 53/136 stm32f373xx electrical characteristics 114 6.1.6 power supply scheme figure 9. power supply scheme 1. dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins. 069 $qdorj 5&v3//&203  3r zhu vzl wfk 9 %$7 *3 ,2 v 287 ,1 .huqhoorjlf &38 'ljlwdo 0hprulhv  %dfnxsflufxlwu\ /6(57& %dfnxsuhjlvwhuv :dnhxsorjlf  ?q)  ? ?)   9 5hjxodwru 9 ''$ 9 66$ $'& '$& /hyhovkliwhu ,2 /rjlf 9 '' q)  ?) 9 ''$ 9 5() 9 5() 9 '' 9 66  ?  ? 6ljpd 'howd $'&v q)  ?) 9''6' 9''6' 9''6' 9''6' 9666' q)  ?) 95()6' 95()6' q)  ?) 95()6' *3 ,2 v 287 ,1 /hyhovkliwhu ,2 /rjlf *3 ,2 v 287 ,1 /hyhovkliwhu ,2 /rjlf q)  ?) 9 5() 5() 9 9 #9 '' #9''6' #9''6'
electrical characteristics stm32f373xx 54/136 docid022691 rev 5 caution: each power supply pair (v dd /v ss , v dda /v ssa etc..) must be decoupled with filtering ceramic capacitors as shown above. these capa citors must be placed as close as possible to, or below, the appropriate pins on the underside of the pcb to ensure the good functionality of the device. 6.1.7 current consumption measurement figure 10. current consum ption measurement scheme -36 6 "!4 6 $$ 6 $$! ) $$ ?6 "!4 ) $$ ) $$! 6$$3$ ) $$3$ ) $$3$ 6$$3$
docid022691 rev 5 55/136 stm32f373xx electrical characteristics 114 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 19: voltage characteristics , table 20: current characteristics , and table 21: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may af fect device reliability. all main power (v dd , v ddsd12 , v ddsd3 and v dda ) and ground (v ss , v sssd , and v ssa ) pins must always be connected to the external power supply, in the permitted range. the following relationship must be respected between v dda and v dd : v dda must power on before or at the same time as v dd in the power up sequence. v dda must be greater than or equal to v dd . the following relationship must be respected between v dda and v ddsd12 : v dda must power on before or at the same time as v ddsd12 or v ddsd3 in the power up sequence. v dda must be greater than or equal to v ddsd12 or v ddsd3 . the following relationship must be respected between v ddsd12 and v ddsd3 : v ddsd3 must power on before or at the same time as v ddsd12 in the power up sequence. after power up (v ddsd12 > vrefint = 1.2 v) v ddsd3 can be higher or lower than v ddsd12 . the following relationship must be respected between v refsd+ and v ddsd12 , v ddsd3 : v refsd+ must be lower than v ddsd3 . table 19. voltage characteristics (1) symbol ratings min max unit v dd ?v ss external main supply voltage (including v dda, v ddsdx , v bat and v dd ) ? 0.3 4.0 v v dd ?v dda allowed voltage difference for v dd > v dda -0.4 v ddsdx ? v dda allowed voltage difference for v ddsdx > v dda -0.4 v refsd+ ? v ddsd3 allowed voltage difference for v refsd+ > v ddsd3 -0.4 v ref+ ? v dda allowed voltage difference for v ref+ > v dda -0.4 v in (2) input voltage on ft and ftf pins v ss ? 0.3 v dd + 4.0 input voltage on tta pins v ss ? 0.3 4.0 input voltage on tc pins on sdadcx channels inputs (3) v ss ? 0.3 4.0 input voltage on any other pin v ss ? 0.3 4.0 |v ssx ? v ss | variations between all the different ground pins 50 mv v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.12: electrical sensitivity characteristics 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. 2. v in maximum must always be respected. refer to table 20: current characteristics for the maximum allowed injected current values. 3. vddsd12 is the external power supply for pb2, pb10, and pe7 to pe15 i/o pins (i/o ground pin is internally connected to v ss ). vddsd3 is the external power supply for pb14 to pb 15 and pd8 to pd15 i/o pins (i /o ground pin is internally connected to v ss ).
electrical characteristics stm32f373xx 56/136 docid022691 rev 5 depending on the sdadcx operation mode, there can be more constraints between v refsd+ , v ddsd12 and v ddsd3 which are described in reference manual rm0313. table 20. current characteristics symbol ratings max. unit i vdd total current into sum of all vdd_x and vddsdx power lines (source) (1) 160 ma i vss total current out of sum of all vss_x and vsssd ground lines (sink) (1) -160 i vdd(pin) maximum current into each vdd_ x or vddsdx power pin (source) (1) 100 i vss(pin) maximum current out of each vss_ x or vsssd ground pin (sink) (1) -100 i io(pin) output current sunk by any i/o and control pin 25 output current source by any i/o and control pin -25 i io(pin) total output current sunk by sum of all ios and control pins (2) 80 total output current sourced by sum of all ios and control pins (2) -80 i inj(pin) injected current on ft, ftf and b pins (3) -5/+0 injected current on tc and rst pin (4) 5 injected current on tta pins (5) 5 i inj(pin) total injected current (sum of all i/o and control pins) (6) 25 1. vddsd12 is the external power supply for the pb2, pb10, and pe7 to pe15 i/o pins (the i/o pin ground is internally connected to v ss ). vddsd3 is the external power supply for pb14 to pb15 and pd8 to pd15 i/o pins (the i/o pin ground is internally connected to v ss ). v dd (vdd_x) is the external power supply for all remaining i/o pins (the i/o pin ground is internally connected to v ss ). 2. this current consumption must be correctly distributed over all i/os and control pins. the total output current must not be sunk/sourced between two c onsecutive power supply pins referrin g to high pin count lqfp packages. 3. positive injection is not possible on these i/os and does not occur for input voltages lower than the specified maximum value. 4. a positive injection is induced by v in >v dd while a negative inject ion is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 19: voltage characteristics for the maximum allowed input voltage values. 5. a positive injection is induced by v in >v dda while a negative injection is induced by v in < v ss . i inj (pin) must never be exceeded. refer also to table 19: voltage characteristics for the maximum allowed input voltage values. negative injection disturbs the analog performance of the device. see note (2) below table 62 . 6. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected currents (instantaneous values). table 21. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c
docid022691 rev 5 57/136 stm32f373xx electrical characteristics 114 6.3 operating conditions 6.3.1 general operating conditions table 22. general operating conditions symbol parameter conditions min max unit f hclk internal ahb clock frequency 0 72 mhz f pclk1 internal apb1 clock frequency 0 36 f pclk2 internal apb2 clock frequency 0 72 v dd standard operating voltage must have a potential equal to or lower than v dda 2.0 3.6 v v dda (1) analog operating voltage (adc and dac used) must have a potential equal to or higher than v dd 2.4 3.6 v analog operating voltage (adc and dac not used) 2.0 3.6 v ddsd12 vddsd12 operating voltage (sdadc used) must have a potential equal to or lower than v dda 2.2 3.6 v vddsd12 operating voltage (sdadc not used) 2.0 3.6 v ddsd3 vddsd3 operating voltage (sdadc used) must have a potential equal to or lower than v dda 2.2 3.6 v vddsd3 operating voltage (sdadc not used) 2.0 3.6 v ref+ positive reference voltage (adc and dac used) must have a potential equal to or lower than v dda 2.4 3.6 v positive reference voltage (adc and dac not used) 2.0 3.6 v refsd+ sdadcx positive reference voltage must have a potential equal to or lower than any v ddsdx 1.1 3.6 v v bat backup operating voltage 1.65 3.6 v v in input voltage on ft and ftf pins (2) - 0.3 5.5 v input voltage on tta pins - 0.3 v dda + 0.3 input voltage on tc pins on sdadcx channels inputs (3) - 0.3 v ddsdx + 0.3 input voltage on boot0 pin 0 5.5 input voltage on any other pin - 0.3 v dd + 0.3
electrical characteristics stm32f373xx 58/136 docid022691 rev 5 6.3.2 operating conditions at power-up / power-down the parameters given in table 23 are derived from tests performed under the ambient temperature condition summarized in table 22 . p d power dissipation at t a = 85 c for suffix 6 or t a = 105 c for suffix 7 (4) lqfp100 434 mw lqfp64 444 lqfp48 364 bga100 338 t a ambient temperature for 6 suffix version maximum power dissipation ?40 85 c low power dissipation (5) ?40 105 ambient temperature for 7 suffix version maximum power dissipation ?40 105 c low power dissipation (5) ?40 125 t j junction temperature range 6 suffix version ?40 105 c 7 suffix version ?40 125 1. when the adc is used, refer to table 60: adc characteristics . 2. to sustain a voltage higher than v dd +0.3 v, the internal pull-up/pull- down resistors must be disabled. 3. vddsd12 is the external power s upply for the pb2, pb10, and pe7 to pe15 i/o pins (the i/o pin ground is internally connected to vss). vddsd3 is the external power supply for pb14 to pb15 and pd8 to pd15 i/o pins (the i/o pin ground is internally connected to vss). 4. if t a is lower, higher p d values are allowed as long as t j does not exceed t jmax . 5. in low power dissipation state, t a can be extended to this range as long as t j does not exceed t jmax . table 22. general operating conditions (continued) symbol parameter conditions min max unit table 23. operating conditions at power-up / power-down symbol parameter conditions min max unit t vdd v dd rise time rate 0 s/v v dd fall time rate 20 t vdda v dda rise time rate 0 v dda fall time rate 20
docid022691 rev 5 59/136 stm32f373xx electrical characteristics 114 6.3.3 embedded reset and power control block characteristics the parameters given in table 24 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . table 24. embedded reset and power control block characteristics symbol parameter conditions min typ max unit v por/pdr (1) 1. the pdr detector monitors v dd , v dda and v ddsd12 (if kept enabled in the option bytes). the por detector monitors only v dd . power on/power down reset threshold falling edge 1.80 (2) 2. the product behavior is guaranteed by design down to the minimum v por/pdr value. 1.88 1.96 v rising edge 1.84 1.92 2.00 v v pdrhyst (3) pdr hysteresis - 40 - mv t rsttempo (3) 3. guaranteed by design, not tested in production. por reset temporization 1.50 2.50 4.50 ms table 25. programmable voltage detector characteristics symbol parameter conditions min (1) 1. data based on characterization results only, not tested in production. typ max (1) unit v pvd0 pvd threshold 0 rising edge 2.10 2.18 2.26 v falling edge 2.00 2.08 2.16 v v pvd1 pvd threshold 1 rising edge 2.19 2.28 2.37 v falling edge 2.09 2.18 2.27 v v pvd2 pvd threshold 2 rising edge 2.28 2.38 2.48 v falling edge 2.18 2.28 2.38 v v pvd3 pvd threshold 3 rising edge 2.38 2.48 2.58 v falling edge 2.28 2.38 2.48 v v pvd4 pvd threshold 4 rising edge 2.47 2.58 2.69 v falling edge 2.37 2.48 2.59 v v pvd5 pvd threshold 5 rising edge 2.57 2.68 2.79 v falling edge 2.47 2.58 2.69 v v pvd6 pvd threshold 6 rising edge 2.66 2.78 2.9 v falling edge 2.56 2.68 2.8 v v pvd7 pvd threshold 7 rising edge 2.76 2.88 3.00 v falling edge 2.66 2.78 2.90 v v pvdhyst (2) 2. guaranteed by design, not tested in production. pvd hysteresis - 100 - mv idd(pvd) (2) pvd current consumption - 0.15 0.26 a
electrical characteristics stm32f373xx 60/136 docid022691 rev 5 6.3.4 embedded reference voltage the parameters given in table 27 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . table 26. embedded internal reference voltage calibration values calibration value name description memory address vrefint_cal raw data acquired at temperature of 30 c v dda = 3.3 v 0x1fff f7ba - 0x1fff f7bb table 27. embedded internal reference voltage symbol parameter conditions min typ max unit v refint internal reference voltage ?40 c < t a < +105 c 1.16 1.21 1.26 v ?40 c < t a < +85 c 1.16 1.20 1.24 (1) t s_vrefint (2) adc sampling time when reading the internal reference voltage 17.10 - - s v refint_s (3) internal reference voltage spread over the temperature range v dd = 3 v 10 mv - - 10 mv t coeff (3) temperature coefficient - - 100 ppm/c t start (3) startup time - - 10 s 1. data based on characterization results, not tested in production. 2. shortest sampling time can be determined in the application by multiple iterations. 3. guaranteed by design, not tested in production.
docid022691 rev 5 61/136 stm32f373xx electrical characteristics 114 6.3.5 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pi n loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 10: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to coremark code. typical and maximum current consumption the mcu is placed under the following conditions: ? all i/o pins are in input mode with a static value at v dd or v ss (no load) ? all peripherals are disabled ex cept when explicitly mentioned ? the flash memory access time is adjusted to the f hclk frequency (0 wait state from 0 to 24 mhz, 1 wait state from 24 to 48 mhz and 2 wait states from 48 mhz to 72 mhz) ? prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) ? when the peripherals are enabled f apb1 = f ahb /2 , f apb2 = f ahb ? when f hclk > 8 mhz pll is on and pll inputs is equal to hsi/2 = 4 mhz (if internal clock is used) or hse = 8 mhz (if hse bypass mode is used) the parameters given in table 28 to table 34 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 22 . table 28. typical and maximum current consumption from v dd supply at v dd = 3.6 v (1) symbol parameter conditions f hclk all peripherals enabled all peripherals disabled unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c i dd supply current in run mode, code executing from flash hse bypass, pll on 72 mhz 63.1 70.7 71.5 73. 4 29.2 31.1 31.7 34.2 ma 64 mhz 56.3 63.3 64.1 64. 9 26.1 27.8 28.4 30.4 48 mhz 42.5 48.5 48.0 50. 1 19.9 22.6 21.9 23.1 32 mhz 28.8 31.4 32.2 34. 3 13.1 16.1 14.9 16.2 24 mhz 21.9 24.4 24.4 25. 8 10.1 10.9 11.9 12.4 hse bypass, pll off 8 mhz 7.3 8.0 9.3 9.3 3.7 4.1 4.4 5.0 1 mhz 1.1 1.5 1.8 2.3 0.8 1.1 1.4 1.9 hsi clock, pll on 64 mhz 51.7 57.7 58.0 60. 4 25.8 27.6 28.1 30.1 48 mhz 38.6 45.9 43.5 46. 9 19.8 21.9 21.7 22.8 32 mhz 26.4 31.1 29.7 31. 9 13.1 15.7 14.8 16.2 24 mhz 20.3 22.6 22.6 23.7 6.9 7.5 8.1 8.8 hsi clock, pll off 8 mhz 7.0 7.6 8.8 8.8 3.7 4.1 4.4 5.0
electrical characteristics stm32f373xx 62/136 docid022691 rev 5 i dd supply current in run mode, code executing from ram hse bypass, pll on 72 mhz 63.6 (3) 70.7 (3) 75.7 (3) 72.3 (3) 30.0 (3) 31.9 (3) 32.6 (3) 33.8 (3) ma 64 mhz 56.7 62.5 67.1 64. 0 26.7 28.6 29.3 30.0 48 mhz 42.0 50.5 47.4 50. 1 20.2 21.5 22.1 22.7 32 mhz 28.3 32.1 31.8 33. 7 13.4 14.6 14.8 15.7 24 mhz 21.1 25.0 24.2 25. 9 10.0 11.3 11.2 12.6 hse bypass, pll off 8 mhz 6.9 7.4 8.3 8.7 3.4 3.7 4.1 4.8 1 mhz 0.8 1.2 1.5 2.0 0.4 0.6 1.0 1.5 hsi clock, pll on 64 mhz 51.9 59.5 59.4 58. 6 26.4 28.1 28.7 29.5 48 mhz 38.1 44.7 43.8 45. 4 20.0 21.3 21.9 22.3 32 mhz 25.9 31.2 29.4 30. 5 13.2 14.3 14.6 15.5 24 mhz 19.6 22.7 22.6 23.2 6.5 7.0 7.9 8.2 hsi clock, pll off 8 mhz 6.6 7.1 8.0 8.4 3.3 3.7 4.0 4.7 supply current in sleep mode, code executing from flash or ram hse bypass, pll on 72 mhz 43.2 46.9 48.7 52.5 6.7 7.2 7.6 8.3 64 mhz 38.5 41.6 43.7 46.6 5.9 6.5 6.8 7.5 48 mhz 29.1 31.3 32.5 34.1 4.5 4.9 5.3 5.9 32 mhz 19.4 21.1 24.6 23.0 3.0 3.4 3.8 4.4 24 mhz 14.7 16.1 18.5 17.6 2.4 2.6 3.0 3.6 hse bypass, pll off 8 mhz 4.9 5.3 6.1 6.6 0.8 1.0 1.4 1.9 1 mhz 0.6 0.9 1.3 1.8 0.1 0.3 0.6 1.2 hsi clock, pll on 64 mhz 34.5 37.1 39.6 42.0 5.6 6.1 6.5 7.1 48 mhz 26.1 28.0 29.0 30.7 4.2 4.6 5.0 5.6 32 mhz 17.4 19.1 21.1 20.8 2.9 3.2 3.6 4.2 24 mhz 13.3 14.6 16.1 16.0 1.5 1.8 2.2 2.6 hsi clock, pll off 8 mhz 4.5 4.9 5.5 6.1 0.7 0.9 1.3 1.8 1. to calculate complete device consumption there must be added consumption from vdda ( table 29. ). 2. data based on characterization results, not te sted in production unless otherwise specified. 3. data based on characterization results and tested in production with code executing from ram. table 28. typical and maximum current consumption from v dd supply at v dd = 3.6 v (1) symbol parameter conditions f hclk all peripherals enabled all peripherals disabled unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c
docid022691 rev 5 63/136 stm32f373xx electrical characteristics 114 note: v dda monitoring is off and v ddsd12 monitoring is off. to calculate complete device consumption there must be added consumption from v dda ( table 31. ) table 29. typical and maximum current consumption from v dda supply symbol parameter conditions (1) f hclk v dda = 2.4 v v dda = 3.6 v unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c i dda supply current in run or sleep mode, code executing from flash or ram hse bypass, pll on 72 mhz 228 261 274 280 249 288 304 311 a 64 mhz 201 235 247 251 220 257 269 275 48 mhz 152 182 190 195 164 196 208 212 32 mhz 104 132 137 141 112 141 147 150 24 mhz 81 108 112 111 87 115 119 119 hse bypass, pll off 8 mhz 2 4 4 5 3 5 5 6 1 mhz 2 4 5 5 3 5 5 6 hsi clock, pll on 64 mhz 270 307 320 326 298 337 353 361 48 mhz 220 254 264 269 243 276 292 297 32 mhz 172 203 211 214 191 222 232 235 24 mhz 151 181 185 189 166 194 201 204 hsi clock, pll off 8 mhz 70 85 87 87 81 93 96 98 1. current consumption from the v dda supply is independent of whether the peripherals are on or off. furthermore when the pll is off, i dda is independent from the frequency. 2. data based on characterization results, not tested in production unless otherwise specified. table 30. typical and maximum v dd consumption in stop and standby modes symbol parameter conditions typ@v dd (v dd =v dda )max unit 2.0 v 2.4 v 2.7 v 3.0 v 3.3 v 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd supply current in stop mode regulators in run mode, all oscillators off 19.33 19.58 19.68 19.73 19.76 19.84 46.5 480 1019 a regulators in low-power mode, all oscillators off 7.72 7.88 8.01 8.13 8.25 8.27 31.8 451.4 966.0 supply current in standby mode lsi on and iwdg on 0.78 0.95 1.07 1.21 1.32 1.45 - - - lsi off and iwdg off 0.61 0.72 0.81 0.90 0.98 1.08 2.7 3.5 5.3
electrical characteristics stm32f373xx 64/136 docid022691 rev 5 table 31. typical and maximum v dda consumption in stop and standby modes symbol parameter conditions typ@v dd (v dd =v dda )max (1) unit 2.0 v2.4 v2.7 v3.0 v3.3 v3.6 v t a = 25 c t a = 85 c t a = 105 c i dda supply current in stop mode v dda and v ddsd12 regulator in run mode, all oscillators off 1.99 2.07 2.19 2.33 2.46 2.64 10.8 11.8 12.4 a regulator in low-power mode, all oscillators off 1.99 2.07 2.18 2.32 2.47 2.63 10.6 11.5 12.5 supply current in standby mode lsi on and iwdg on 2.44 2.53 2.7 2.89 3.09 3.33 - - - lsi off and iwdg off 1.87 1.94 2.06 2.19 2.35 2.51 4.1 4.5 4.8 iddamon supply current for v dda and v ddsd12 monitoring 0.95 1.02 1.12 1.2 1.27 1.4 - - - 1. data based on characterization re sults and tested in production. 2. to obtain data with monitoring off is necessary to substract the iddamon current. table 32. typical and maximum current consumption from v bat supply (1) symbol parameter conditions typ @ v bat max (2) unit = 1.65 v = 1.8 v = 2.0 v = 2.4 v = 2.7 v = 3.3 v = 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd_ vbat backup domain supply current lse & rtc on; "xtal mode" lower driving capability; lsedrv[1:0] = '00' 0.50 0.52 0.55 0.63 0.70 0.87 0.95 1.1 1.6 2.2 a lse & rtc on; "xtal mode" higher driving capability; lsedrv[1:0] = '11' 0.85 0.90 0.93 1.02 1.10 1.27 1.38 1.6 2.4 3.0 1. crystal used: abracon abs07-120-32.768khz-t with 6 pf of cl for typical values. 2. data based on characterization re sults, not tested in production.
docid022691 rev 5 65/136 stm32f373xx electrical characteristics 114 figure 11. typical v bat current consumption (lse and rtc on/lsedrv[1:0]='00') typical current consumption the mcu is placed under the following conditions: ? v dd = v dda = v ddsd12 = v ddsd3 = 3.3 v ? all i/o pins are in analog input configuration ? the flash access time is adjusted to f hclk frequency (0 wait states from 0 to 24 mhz, 1 wait state from 24 to 48 mhz and 2 wait states from 48 mhz to 72 mhz) ? prefetch is on ? when the peripherals are enabled, f apb1 = f ahb , f apb2 = f ahb ? pll is used for frequencies greater than 8 mhz ? ahb prescaler of 2, 4, 8, 16 and 64 is us ed for the frequencies 4 mhz, 2 mhz, 1 mhz, 500 khz and 125 khz respectively                 ?& ?& ?& ?&  9  9 9  9  9 9  9  9 -36 ?! ) 6"!4 4 ! ?#
electrical characteristics stm32f373xx 66/136 docid022691 rev 5 table 33. typical current consumption in run m ode, code with data processing running from flash symbol parameter conditions f hclk typ unit peripherals enabled peripherals disabled i dd supply current in run mode from v dd supply running from hse crystal clock 8 mhz, code executing from flash, pll on 72 mhz 61.4 28.8 ma 64 mhz 55.4 25.9 48 mhz 42.3 20.0 32 mhz 28.7 13.8 24 mhz 21.9 10.7 16 mhz 14.8 7.4 running from hse crystal clock 8 mhz, code executing from flash, pll off 8 mhz 7.8 4.1 4 mhz 4.6 2.6 2 mhz 2.9 1.8 1 mhz 2.0 1.3 500 khz 1.5 1.1 125 khz 1.2 1.0 i dda (1)(2) supply current in run mode from v dda supply running from hse crystal clock 8 mhz, code executing from flash, pll on 72 mhz 243.3 242.4 a 64 mhz 214.3 213.3 48 mhz 159.3 158.3 32 mhz 107.7 107.3 24 mhz 82.8 82.6 16 mhz 58.4 58.2 running from hse crystal clock 8 mhz, code executing from flash, pll off 8 mhz 1.2 1.2 4 mhz 1.2 1.2 2 mhz 1.2 1.2 1 mhz 1.2 1.2 500 khz 1.2 1.2 125 khz 1.2 1.2 i sdadc12 + i sdadc3 supply currents in run mode from v ddsd12 and v ddsd3 (sdadcs are off) -2.5 1 1. v dda monitoring is off, v ddsd12 monitoring is off. 2. when peripherals are enabled, power consumption of the analog part of peripherals such as adc, dacs, comparators, etc. is not included. refer to those peripheral s characteristics in the subsequent sections.
docid022691 rev 5 67/136 stm32f373xx electrical characteristics 114 table 34. typical current consumption in sleep mode, code running from flash or ram symbol parameter conditions f hclk typ unit peripherals enabled peripherals disabled i dd supply current in sleep mode from v dd supply running from hse crystal clock 8 mhz, code executing from flash or ram, pll on 72 mhz 42.8 6.9 ma 64 mhz 38.2 6.2 48 mhz 28.9 4.8 32 mhz 19.5 3.4 24 mhz 14.7 2.7 16 mhz 10.2 2.0 running from hse crystal clock 8 mhz, code executing from flash or ram, pll off 8 mhz 5.2 1.2 4 mhz 3.4 1.1 2 mhz 2.2 0.9 1 mhz 1.6 0.9 500 khz 1.4 0.8 125 khz 1.1 0.8 i dda (1) supply current in sleep mode from v dda supply running from hse crystal clock 8 mhz, code executing from flash or ram, pll on 72 mhz 242.9 241.5 a 64 mhz 213.7 212.7 48 mhz 158.8 158.0 32 mhz 107.6 107.3 24 mhz 82.7 82.6 16 mhz 58.3 58.2 running from hse crystal clock 8 mhz, code executing from flash or ram, pll off 8 mhz 1.2 1.2 4 mhz 1.2 1.2 2 mhz 1.2 1.2 1 mhz 1.2 1.2 500 khz 1.2 1.2 125 khz 1.2 1.2 1. v dda monitoring is off, v ddsd12 monitoring is off.
electrical characteristics stm32f373xx 68/136 docid022691 rev 5 i/o system current consumption the current consumption of the i/o system has two components: static and dynamic. i/o static current consumption all the i/os used as inputs with pull-up ge nerate current consumpt ion when the pin is externally held low. the value of this current consumption can be simply computed by using the pull-up/pull-down resi stors values given in table 52: i/o static characteristics . for the output pins, any external pull-down or external load must also be considered to estimate the current consumption. additional i/o current consumption is due to i/os configured as inputs if an intermediate voltage level is externally applie d. this current consumption is caused by the input schmitt trigger circuits used to discriminate the input va lue. unless this spec ific configuration is required by the application, this supply curr ent consumption can be avoided by configuring these i/os in analog mode. this is notably th e case of adc and sdadc input pins which should be configured as analog inputs. caution: any floating input pin can also settle to an in termediate voltage level or switch inadvertently, as a result of external electromagnetic nois e. to avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. this can be done either by usin g pull-up/down resistors or by configuring the pins in output mode. under reset conditions a ll i/os are configured in input floating mode - so if some inputs do not have a defined voltage level then they can generate additional consumption. this consumption is visible on v dd supply and also on v ddsdx supply because some i/os are powered from sdadcx supply (all i/os which have sdadc analog input functionality). i/o dynamic current consumption in addition to the internal peripheral current consumption (see table 36: peripheral current consumption ), the i/os used by an application also contribute to the current consumption. when an i/o pin switches, it uses the current from the mcu supply voltage to supply the i/o pin circuitry and to charge/discharge the capaci tive load (internal or external) connected to the pin: where i sw is the current sunk by a switching i/ o to charge/discharge the capacitive load v dd is the mcu supply voltage f sw is the i/o switching frequency c is the total capacitance seen by the i/o pin: c = c int + c ext + c s c s is the pcb board capacitance including the pad pin. the test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. i sw v dd f sw c =
docid022691 rev 5 69/136 stm32f373xx electrical characteristics 114 table 35. switching output i/o current consumption symbol parameter conditions (1) i/o toggling frequency (f sw ) typ unit i sw i/o current consumption v dd = 3.3 v c ext = 0 pf c = c int + c ext + c s 2 mhz 0.77 ma 4 mhz 0.87 8 mhz 0.95 18 mhz 1.59 36 mhz 2.57 48 mhz 3.11 v dd = 3.3 v c ext = 10 pf c = c int + c ext + cs 2 mhz 0.96 4 mhz 1.0 8 mhz 1.08 18 mhz 2.17 36 mhz 3.42 48 mhz 5.50 v dd = 3.3 v c ext = 22 pf c = c int + c ext + cs 2 mhz 0.98 4 mhz 1.23 8 mhz 1.48 18 mhz 2.93 36 mhz 6.59 48 mhz 7.03 v dd = 3.3 v c ext = 33 pf c = c int + c ext + c s 2 mhz 1.03 ma 4 mhz 1.3 8 mhz 1.81 18 mhz 3.42 36 mhz 8.27 v dd = 3.3 v c ext = 47 pf c = c int + c ext + c s 2 mhz 1.09 4 mhz 1.55 8 mhz 2.18 18 mhz 4.38 36 mhz 9.65 1. c s = 5 pf (estimated value).
electrical characteristics stm32f373xx 70/136 docid022691 rev 5 on-chip peripheral current consumption the mcu is placed under the following conditions: ? all i/o pins are in analog input configuration. ? all peripherals are disabled unless otherwise mentioned. ? the given value is calculated by measuring the current consumption ? with all peripherals clocked off; ? with only one peripheral clocked on. ? ambient operating temperature at 25c and v dd = v dda = 3.3 volts. table 36. peripheral current consumption peripheral typical consumption (1) unit ahb peripherals busmatrix (2) 6.9 a/mhz dma1 18.3 dma2 4.8 crc 2.6 gpioa 12.2 gpiob 11.9 gpioc 4.3 gpiod 12.0 gpioe 4.4 gpiof 3.7 tsc 5.7 apb2 peripherals apb2-bridge (3) 4.2 syscfg & comp 2.8 adc1 17.7 spi1 12.3 usart1 22.9 tim15 15.7 tim16 12.2 tim17 12.1 tim19 18.5 sdac1 10.8 sdac2 10.5 sdac3 10.3
docid022691 rev 5 71/136 stm32f373xx electrical characteristics 114 6.3.6 wakeup time from low-power mode the wakeup times given in table 37 are measured from the wakeup event trigger to the first instruction executed by the cpu. the clock source used to wake up the device depends from the current operating mode: ? stop or sleep mode: the wakeup event is wfe. ? the wkup1 (pa0) pin is used to wakeup from standby, stop and sleep modes. apb1 peripherals a/mhz apb1-bridge (3) 6.9 tim2 47.9 tim3 36.8 tim4 36.9 tim5 45.5 tim6 8.4 tim7 8.2 tim12 21.3 tim13 14.2 tim14 14.4 tim18 10.1 wwdg 4.7 spi2 24.3 spi3 25.3 usart2 45.3 usart3 43.1 i2c1 14.0 i2c2 13.9 usb 27.9 can 38.1 dac2 7.7 pwr 5.4 dac1 14.8 cec 5.4 1. when peripherals are enabled, power consumption of t he analog part of peripherals such as adc, dacs, comparators, etc. is not included. refer to those peripherals characteristics in the subsequent sections. 2. the busmatrix is automatically active when at least one master is on (cpu, dma1 or dma2). 3. the apbx bridge is automatically active when at least one peripheral is on on the same bus. table 36. peripheral current consumption (continued) peripheral typical consumption (1) unit
electrical characteristics stm32f373xx 72/136 docid022691 rev 5 all timings are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . 6.3.7 external clock source characteristics high-speed external user clock generated from an external source in bypass mode the hse oscillator is switched off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.14 . however, the recommended clock inpu t waveform is shown in figure 12 . table 37. low-power mode wakeup timings symbol parameter conditions typ @v dd = v dda max unit = 2.0 v = 2.4 v = 2.7 v = 3 v = 3.3 v t wustop wakeup from stop mode regulator in run mode 4.1 3.9 3.8 3.7 3.6 4.5 s regulator in low power mode 7.9 6.7 6.1 5.7 5.4 8.6 t wustandb y wakeup from standby mode lsi and iwdg off 62.6 53.7 49.2 45.7 42.7 100 t wusleep wakeup from sleep mode after wfe instruction 6 cpu clock cycles table 38. high-speed external user clock characteristics symbol parameter (1) 1. guaranteed by design, not tested in production. conditions min typ max unit f hse_ext user external clock source frequency css is on or pll is used 1 832mhz css is off, pll not used 0 v hseh osc_in input pin high level voltage 0.7 v dd v dd v v hsel osc_in input pin low level voltage v ss 0.3 v dd t w(hseh) t w(hsel) osc_in high or low time 15 - - ns t r(hse) t f(hse) osc_in rise or fall time - - 20
docid022691 rev 5 73/136 stm32f373xx electrical characteristics 114 figure 12. high-speed external clock source ac timing diagram low-speed external user clock generated from an external source in bypass mode the lse oscillator is switch ed off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.14 . however, the recommended clock inpu t waveform is shown in figure 13 . table 39. low-speed external user clock characteristics symbol parameter (1) 1. guaranteed by design, not tested in production. conditions min typ max unit f lse_ext user external clock source frequency - 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7v dd -v dd v v lsel osc32_in input pin low level voltage v ss -0.3v dd t w(lseh) t w(lsel) osc32_in high or low time 450 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 50 069 9 +6(+ w i +6(   7 +6( w w u +6( 9 +6(/ w z +6(+ w z +6(/
electrical characteristics stm32f373xx 74/136 docid022691 rev 5 figure 13. low-speed external clock source ac timing diagram high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 4 to 32 mhz crystal/ceramic resonator oscillator. all the information given in this pa ragraph are bas ed on design simulation results obtained with typical external components specified in table 40 . in the application, the resonator and the load capacito rs have to be placed as close as possible to the oscillator pins in order to minimize outpu t distortion and startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, pack age, accuracy). table 40. hse oscilla tor characteristics symbol parameter conditions (1) 1. resonator characteristics given by the crystal/ceramic resonator manufacturer. min (2) typ max (2) 2. guaranteed by design, not tested in production. unit f osc_in oscillator frequency 4 8 32 mhz r f feedback resistor - 200 - k i dd hse current consumption during startup (3) 3. this consumption level occurs during the first 2/3 of the t su(hse) startup time --8.5 ma v dd = 3.3 v, rm= 30 , cl= 10 pf@8 mhz -0.4- v dd = 3.3 v, rm= 45 , cl= 10 pf@8 mhz -0.5- v dd = 3.3 v, rm= 30 , cl=5 pf@32 mhz -0.8- v dd = 3.3 v, rm= 30 , cl= 10 pf@32 mhz -1- v dd = 3.3 v, rm= 30 , cl= 20 pf@32 mhz -1.5- g m oscillator transconductance startup 10 - - ma/v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal res onator and it can vary significantly with the crystal manufacturer startup time v dd is stabilized - 2 - ms 069 9 /6(+ w i /6(   7 /6( w w u /6( 9 /6(/ w z /6(+ w z /6(/
docid022691 rev 5 75/136 stm32f373xx electrical characteristics 114 for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 20 pf range (typ.), designed for high- frequency applications, and selected to match the requirements of the crystal or resonator (see figure 14 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . note: for information on electing the crystal, refer to the app lication note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com. figure 14. typical application with an 8 mhz crystal 1. r ext value depends on the cr ystal characteristics. 069 0+ ] uhvrqdwru 5hvrqdwruzlwk lqwhjudwhgfdsdflwruv %ldv frqwuroohg jdlq 5 (;7  & / & / 26&b,1 26&b287 5 ) i +6(
electrical characteristics stm32f373xx 76/136 docid022691 rev 5 low-speed external clock generated from a crystal resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal resonator oscillator. all the information gi ven in this paragraph are based on design simulation results obtained with typical external components specified in table 41 . in the application, the resonator and the load capa citors have to be placed as cl ose as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time . refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com. table 41. lse oscillator characteristics (f lse = 32.768 khz) symbol parameter conditions (1) min (2) typ max (2) unit i dd lse current consumption lsedrv[1:0]=00 lower driving capability -0.50.9 a lsedrv[1:0]= 01 medium low driving capability --1 lsedrv[1:0] = 10 medium high driving capability --1.3 lsedrv[1:0]=11 higher driving capability --1.6 g m oscillator transconductance lsedrv[1:0]=00 lower driving capability 5- - a/v lsedrv[1:0]= 01 medium low driving capability 8- - lsedrv[1:0] = 10 medium high driving capability 15 - - lsedrv[1:0]=11 higher driving capability 25 - - t su(lse) (3) startup time v dd is stabilized - 2 - s 1. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. 2. guaranteed by design, not tested in production. 3. t su(lse) is the startup time measured from the moment it is en abled (by software) to a stabili zed 32.768 khz oscillation is reached. this value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
docid022691 rev 5 77/136 stm32f373xx electrical characteristics 114 figure 15. typical applicati on with a 32.768 khz crystal note: an external resistor is not required between osc32_in and osc32_out and it is forbidden to add one. 6.3.8 internal clock source characteristics the parameters given in table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 22 . the provided curves are chararacterizati on results, not tested in production. high-speed internal (hsi) rc oscillator 069 26&b28 7 26&b,1 i /6( & / n+ ] uhvrqdwru & / 5hvrqdwruzlwk lqwhjudwhgfdsdflwruv 'ulyh surjudppdeoh dpsolilhu table 42. hsi oscillator characteristics (1) 1. v dda =3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi frequency - 8 - mhz trim hsi user trimming step - - 1 (2) 2. guaranteed by design, not tested in production. % ducy (hsi) duty cycle 45 (2) -55 (2) % acc hsi accuracy of the hsi oscillator (factory calibrated) t a = ?40 to 105 c ?3.8 (3) 3. data based on characterization results, not tested in production. -4.6 (3) % t a = ?10 to 85 c ?2.9 (3) -2.9 (3) % t a = 0 to 70 c ?2.3 (3) -?2.2 (3) % t a = 25 c ?1 - 1 % t su(hsi) hsi oscillator startup time 1 (3) -2 (3) s i dd(hsi) hsi oscillator power consumption - 80 100 (3) a
electrical characteristics stm32f373xx 78/136 docid022691 rev 5 figure 16. hsi oscillator accuracy characterization results low-speed internal (lsi) rc oscillator 6.3.9 pll characteristics the parameters given in table 44 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 22 . table 43. lsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter min typ max unit f lsi frequency 30 40 60 khz t su(lsi) (2) 2. guaranteed by design, not tested in production. lsi oscillator startup time - - 85 s i dd(lsi) (2) lsi oscillator power consumption - 0.75 1.2 a -36                     -!8 -). 4;?#= ! table 44. pll characteristics symbol parameter value unit min typ max f pll_in pll input clock (1) 1. take care of using the appropriate multiplier factors so as to have pll input clock values compatible with the range defined by f pll_out . 1 (2) -24 (2) mhz pll input clock duty cycle 40 (2) -60 (2) % f pll_out pll multiplier output clock 16 (2) -72mhz t lock pll lock time - - 200 (2) 2. guaranteed by design, not tested in production. s jitter cycle-to-cycle jitter - - 300 (2) ps
docid022691 rev 5 79/136 stm32f373xx electrical characteristics 114 6.3.10 memory characteristics flash memory the characteristics are given at t a = ?40 to 105 c unless otherwise specified. table 45. flash memory characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design, not tested in production. unit t prog 16-bit programming time t a = ?40 to +105 c 40 53.5 60 s t erase page (2 kb) erase time t a = ?40 to +105 c 20 - 40 ms t me mass erase time t a = ?40 to +105 c 20 - 40 ms i dd supply current write mode - - 10 ma erase mode - - 12 ma table 46. flash memory endurance and data retention symbol parameter conditions value unit min (1) 1. data based on characterization results, not tested in production. n end endurance t a = ?40 to +85 c (6 suffix versions) t a = ?40 to +105 c (7 suffix versions) 10 kcycles t ret data retention 1 kcycle (2) at t a = 85 c 2. cycling performed over the whole temperature range. 30 years 1 kcycle (2) at t a = 105 c 10 10 kcycles (2) at t a = 55 c 20
electrical characteristics stm32f373xx 80/136 docid022691 rev 5 6.3.11 emc characteristics susceptibility tests are perf ormed on a sample basis duri ng device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on t he device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure o ccurs. the failure is indicated by the leds: ? electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ? ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a func tional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in table 47 . they are based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are per formed at component level with a typical application environment and simplified mcu soft ware. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in re lation with the emc level requested for his application. software recommendations the software flowchart must include the m anagement of runaway conditions such as: ? corrupted program counter ? unexpected reset ? critical data corruption (control registers...) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. table 47. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 72 mhz conforms to iec 61000-4-2 3b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 3.3 v, lqfp100, t a = +25 c, f hclk = 72 mhz conforms to iec 61000-4-4 4a
docid022691 rev 5 81/136 stm32f373xx electrical characteristics 114 to complete these trials, esd stress can be applie d directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o por ts). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. 6.3.12 electrical sens itivity characteristics based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determ ine its performance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combinati on. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. table 48. emi characteristics symbol parameter conditions monitored frequency band max vs. [f hse /f hclk ] unit 8/72 mhz s emi peak level v dd = 3.3 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 to 30 mhz 9 dbv 30 to 130 mhz 26 130 mhz to 1 ghz 30 sae emi level 4 - table 49. esd absolute maximum ratings symbol ratings conditions class maximum value (1) 1. data based on characterization results, not tested in production. unit v esd(hbm ) electrostatic discharge voltage (human body model) t a = +25 c, conforming to jesd22- a114 22000 v v esd(cd m) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to ansi/esd stm5.3.1, lqfp100, lqfp64, lqfp48 and bga100 packages ii 500 t a = +25 c, conforming to jesd22- c101, wlcsp66 package ii 250
electrical characteristics stm32f373xx 82/136 docid022691 rev 5 static latch-up two complementary static te sts are required on six pa rts to assess the latch-up performance: ? a supply overvoltage is applied to each power supply pin ? a current injection is applied to each input, output and configurable i/o pin these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.13 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v dd (for standard, 3 v-capable i/o pins) should be avoided during normal product operation. however, in order to give an indica tion of the robustness of the microcontroller in cases when abnormal injection ac cidentally happens, susceptib ility tests are pe rformed on a sample basis during device characterization. functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode . while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (higher than 5 lsb tue), out of conventional limits of induced leakage current on adjacent pins (out of ?5 a/+0 a range), or other functional failu re (for example reset occurrence or oscillator frequency deviation). the test results are given in table 51 . table 50. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +105 c conforming to jesd78a ii level a
docid022691 rev 5 83/136 stm32f373xx electrical characteristics 114 note: it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. table 51. i/o current injection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on boot0 pin -0 na ma injected current on pc0 pin -0 +5 injected current on tc type i/o pins on vddsd12 power domain: pb2, pe7, pe8, pe9, pe10, pe11, pe12, pe13, pe14, pe15, pb10 with induced l eakage current on other pins from this group less than -50 a -5 +5 injected current on tc type i/o pins on vddsd3 power domain: pb14, pb15, pd8, pd 9, pd10, pd12, pd13, pd14, pd15 with induced leakage current on other pins from this group less than -50 a -5 +5 injected current on tta type pins : pa4, pa5, pa6 with induced leakage current on adjacent pins less than -10 a -5 +5 injected current on any other ft and ftf pins -5 na injected current on any other pins -5 +5
electrical characteristics stm32f373xx 84/136 docid022691 rev 5 6.3.14 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in table 52 are derived from tests performed under the conditions summarized in table 22 . all i/os are cmos and ttl compliant. table 52. i/o static characteristics (1) symbol parameter conditions min typ max unit v il low level input voltage tc and tta i/o - - 0.3v dd +0.07 (2) v ft and ftf i/o - - 0.475v dd ?0.2 (2) boot0 - - 0.3v dd ?0.3 (2) all i/os except boot0 pin - - 0.3v dd v ih high level input voltage tc and tta i/o 0.445v dd +0.398 (2) -- ft and ftf i/o 0.5v dd+0.2 (2) -- boot0 0.2v dd +0.95 (2) -- all i/os except boot0 pin 0.7v dd -- v hys schmitt trigger hysteresis tc and tta i/o - 200 (2) - mv ft and ftf i/o - 100 (2) - boot0 - 300 (2) - i lkg input leakage current (3) tc, ft and ftf i/o tta in digital mode v ss < v in < v dd -- 0 . 1 a tta in digital mode v dd v in v dda --1 tta in analog mode v ss v in v dda --0.2 ft and ftf i/o (3) v dd v in 5 v --10 r pu weak pull-up equivalent resistor (4) v in = v ss 25 40 55 k r pd weak pull-down equivalent resistor (4) v in = v dd 25 40 55 c io i/o pin capacitance - 5 - pf 1. vddsd12 is the external power supply for the pb2, pb10, and pe7 to pe15 i/o pins (the i/o pin ground is internally connected to vss). vddsd3 is the external power supply fo r pb14 to pb15 and pd8 to pd15 i/o pins (the i/o pin ground is internally connected to vss). for those pins all v dd supply references in this table are related to their given vddsdx power supply. 2. data based on design simulation only. not tested in production. 3. leakage could be higher than maximum value, if negative current is injected on adjacent pins. 4. pull-up and pull-down resistors are designed with a true resi stance in series with a sw itchable pmos/nmos. this pmos/nmos contribution to the series resistance is minimal (~10% order).
docid022691 rev 5 85/136 stm32f373xx electrical characteristics 114 note: i/o pins are powered from v dd voltage except pins which can be used as sdadc inputs: - the pb2, pb10 and pe7 to pe15 i/o pins are powered from v ddsd12 . - pb14 to pb15 and pd8 to pd15 i/o pins are powered from v ddsd3 . all i/o pin ground is internally connected to v ss . v dd mentioned in the table 52 represents power voltage for a given i/o pin (v dd or v ddsd12 or v ddsd3 ). all i/os are cmos and ttl compliant (no software configuration required). their characteristics cover more than the strict cmos-technology or ttl parameters. the coverage of these requirements is shown in figure 17 and figure 18 for standard i/os, and in figure 19 and figure 20 for 5 v tolerant i/os. figure 17. tc and tta i/o input characteristics - cmos port figure 18. tc and tta i/o input characteristics - ttl port 069 9 '' 9 9 ,+plq  9 ,/pd[  9 ,/ 9 ,+ 9    9 ,/pd[ 9 ''      &026vwdqgduguhtxluhphqwv9 ,/pd[ 9 '' 9 ,+plq 9 ''  $uhdqrwghwhuplqhg 7hvwhglqsurgxfwlrq 7hvwhglqsurgxfwlrq %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv &026vwdqgduguhtxluhphqwv9 ,+plq  9 '' 9 '' 9 9 ,+plq  9 ,/pd[  9 ,/ 9 ,+ 9    9 ,/pd[ 9 ''       9 ,+plq 9 ''  $uhdqrwghwhuplqhg %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv -36 77/vwdqgduguhtxluhphqwv9 ,+plq 9 77/vwdqgduguhtxluhphqwv9 ,/pd[ 9
electrical characteristics stm32f373xx 86/136 docid022691 rev 5 figure 19. five volt tolerant (ft and ftf ) i/o input characteristics - cmos port figure 20. five volt tolerant (ft and ftf) i/o input characteristics - ttl port output driving current the gpios (general purpose input/outputs) can si nk or source up to 8 ma, and sink or source up to 20 ma (with a relaxed v ol/ v oh ). in the user application, the number of i/o pi ns which can drive curr ent must be limited to respect the absolute maximum rating specified in section 6.2 : ? the sum of the currents sourced by all the i/os on all vdd_x and vddsdx, plus the maximum run consumption of the mcu sourced on v dd cannot exceed the absolute maximum rating s i vdd (see table 20 ). ? the sum of the currents sunk by all the i/os on a ll vss_x and vsssd, plus the maximum run consumption of the mcu sunk on v ss cannot exceed the absolute maximum rating s i vss (see table 20 ). 9 '' 9   9 ,/ 9 ,+ 9     $uhdqrwghwhuplqhg -36 9 ,/pd[ 9 ''  9 ,+plq 9 ''  %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv &026vwdqgduguhtxluhphqwv9 ,+plq 9 '' &026vwdqgduguhtxluhphqwv9 ,/pd[ 9 '' 9 '' 9   9 ,/ 9 ,+ 9     $uhdqrwghwhuplqhg -36 9 ,/pd[ 9 ''  9 ,+plq 9 ''  %dvhgrqghvljqvlpxodwlrqv %dvhgrqghvljqvlpxodwlrqv 77/vwdqgduguhtxluhphqwv9 ,+plq 9 77/vwdqgduguhtxluhphqwv9 ,/pd[ 9 
docid022691 rev 5 87/136 stm32f373xx electrical characteristics 114 output voltage levels unless otherwise specified, the parameters given in table 53 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . all i/os are cmos and ttl compliant (ft, tta or tc unless otherwise specified). note: i/o pins are powered from v dd voltage except pins which can be used as sdadc inputs: - the pb2, pb10 and pe7 to pe15 i/o pins are powered from v ddsd12 . - pb14 to pb15 and pd8 to pd15 i/o pins are powered from v ddsd3 . all i/o pin ground is internally connected to v ss . v dd mentioned in the table 53 represents power voltage for a given i/o pin (v dd or v ddsd12 or v ddsd3 ). table 53. output voltage characteristics (1) 1. vddsd12 is the external power supply for pb2, pb 10, and pe7 to pe15 i/o pins (the i/o ground pin is internally connected to vss). vddsd3 is the external power supply for pb14 to pb15 and pd8 to pd15 i/o pins (the i/o ground pin is internally connected to vss). for those pins all v dd supply references in this table are related to their given vddsdx power supply. symbol parameter conditions min max unit v ol (2) 2. the i io current sunk by the device must always re spect the absolute maximu m rating specified in table 20 and the sum of i io (i/o ports and control pins) must not exceed i vss . output low level voltage for an i/o pin cmos port (3) i io = +8 ma 2.7 v < v dd < 3.6 v 3. ttl and cmos outputs are compatible with jedec standards jesd36 and jesd52. -0.4 v v oh (4) 4. the i io current sourced by the device must always re spect the absolute maximum rating specified in table 20 and the sum of i io (i/o ports and control pins) must not exceed i vdd . output high level vo ltage for an i/o pin v dd ?0.4 - v ol (2) output low level voltage for an i/o pin ttl port (3) i io = +8 ma 2.7 v < v dd < 3.6 v -0.4 v oh (4) output high level volt age for an i/o pin 2.4 - v ol (2)(5) 5. data based on design simulation. output low level voltage for an i/o pin i io = +20 ma 2.7 v < v dd < 3.6 v -1.3 v oh (4)(5) output high level voltage for an i/o pin v dd ?1.3 - v ol (2)(5) output low level voltage for an i/o pin i io = +6 ma 2 v < v dd < 2.7 v -0.4 v oh (4)(5) output high level vo ltage for an i/o pin v dd ?0.4 - v olfm+ (2) output low level voltage for a ftf i/o pins in fm+ mode i io = +20 ma 2.7 v < v dd < 3.6 v -0.4
electrical characteristics stm32f373xx 88/136 docid022691 rev 5 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 21 and table 54 , respectively. unless otherwise specified, th e parameters given are derived from tests performed under ambient temperature and v dd supply voltage condit ions summarized in table 22 . table 54. i/o ac characteristics (1) ospeedry [1:0] value (1) symbol parameter conditions min max unit x0 f max(io)out maximum frequency (2) c l = 50 pf, v dd = 2 v to 3.6 v - 2 mhz t f(io)out output high to low level fall time c l = 50 pf, v dd = 2 v to 3.6 v -125 (3) ns t r(io)out output low to high level rise time -125 (3) 01 f max(io)out maximum frequency (2) c l = 50 pf, v dd = 2 v to 3.6 v - 10 mhz t f(io)out output high to low level fall time c l = 50 pf, v dd = 2 v to 3.6 v -25 (3) ns t r(io)out output low to high level rise time -25 (3) 11 f max(io)out maximum frequency (2)(3) c l = 30 pf, v dd = 2.7 v to 3.6 v - 50 mhz c l = 50 pf, v dd = 2.7 v to 3.6 v - 30 mhz c l = 50 pf, v dd = 2 v to 2.7 v - 20 mhz t f(io)out output high to low level fall time c l = 30 pf, v dd = 2.7 v to 3.6 v - 5 (3) ns c l = 50 pf, v dd = 2.7 v to 3.6 v - 8 (3) c l = 50 pf, v dd = 2 v to 2.7 v - 12 (3) t r(io)out output low to high level rise time c l = 30 pf, v dd = 2.7 v to 3.6 v - 5 (3) c l = 50 pf, v dd = 2.7 v to 3.6 v - 8 (3) c l = 50 pf, v dd = 2 v to 2.7 v - 12 (3) fm+ configuration (4) f max(io)out maximum frequency (2) cl = 50 pf, v dd = 2 v to 3.6 v -2mhz t f(io)out output high to low level fall time -12 ns t r(io)out output low to high level rise time -34 t extipw pulse width of external signals detected by the exti controller 10 - ns 1. the i/o speed is configured using the ospeedrx[1:0] bits . refer to the rm0313 reference manual for a description of gpio port configuration register. 2. the maximum frequency is defined in figure 21 . 3. guaranteed by design, not tested in production. 4. the i/o speed configuration is bypassed in fm+ i/o m ode. refer to the stm32f37xx reference manual rm0313 for a description of fm+ i/o mode configuration
docid022691 rev 5 89/136 stm32f373xx electrical characteristics 114 figure 21. i/o ac charac teristics definition 6.3.15 nrst characteristics nrst pin characteristics the nrst pin input driver uses cmos technology. it is connected to a permanent pull-up resistor, r pu (see table 52 ). unless otherwise specified, the parameters given in table 55 are derived from tests performed under ambient temperature and v dd supply voltage conditions summarized in table 22 . 069 7       (;7(51$/ 287387 21s) 0d[lpxpiuhtxhqf\lvdfklhyhgli ww ? 7dqgliwkhg xw\f\fohlv  zkhqordghge\s) u i u ,2 rxw w i ,2 rxw w table 55. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) (1) nrst input low level voltage - - 0.3v dd + 0.07 (1) v v ih(nrst) (1) nrst input high level voltage 0.445v dd + 0.398 (1) -- v hys(nrst) (1) nrst schmitt trigger voltage hysteresis -200-mv r pu weak pull-up equivalent resistor (2) v in = v ss 25 40 55 k v f(nrst) (1) nrst input filtered pulse - - 100 ns v nf(nrst) (1) nrst input not filtered pulse 500 - - ns 1. data based on design simulation only, not tested in production. 2. the pull-up is designed with a true resistance in series wi th a switchable pmos. this pmos contribution to the series resistance is minimal (~10% order).
electrical characteristics stm32f373xx 90/136 docid022691 rev 5 figure 22. recommended nrst pin protection 1. the reset network protects t he device against par asitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 55 . otherwise the reset will not be taken into account by the device. 069 5 38 1567  9 '' )lowhu ,qwhuqdo5hvhw ?) ([whuqdo uhvhwflufxlw 
docid022691 rev 5 91/136 stm32f373xx electrical characteristics 114 6.3.16 communications interfaces i 2 c interface characteristics the i 2 c interface meets the requirements of the standard i 2 c communication protocol with the following restrictions: the i/o pins sda and scl are mapped to are not ?true? open- drain. when configured as open-drain, the pmos connected between the i/o pin and v dd is disabled, but is still present. the i 2 c characteristics are described in table 56 . refer also to section 6.3.14: i/o port characteristics for more details on the input/output al ternate function characteristics (sda and scl) . table 56. i2c characteristics (1) symbol parameter standard fast mode fast mode + unit min max min max min max f scl scl clock frequency 0 100 0 400 0 1000 khz t low low period of the scl clock 4.7 - 1.3 - 0.5 - s t high high period of the scl clock 4 - 0.6 - 0.26 - s tr rise time of both sda and scl signals - 1000 - 300 - 120 ns tf fall time of both sda and scl signals - 300 - 300 - 120 ns t hd;dat data hold time 0 - 0 - 0 - s t vd;dat data valid time - 3.45 (2) -0.9 (2) -0.45 (2) s t vd;ack data valid acknowledge time - 3.45 (2) -0.9 (2) -0.45 (2) s t su;dat data setup time 250 - 100 - 50 - ns t hd;sta hold time (repeated) start condition 4.0 - 0.6 - 0.26 - s t su;sta set-up time for a repeated start condition 4.7 - 0.6 - 0.26 - s t su;sto set-up time for stop condition 4.0 - 0.6 - 0.26 - s t buf bus free time between a stop and start condition 4.7 - 1.3 - 0.5 - s c b capacitive load for each bus line - 400 - 400 - 550 pf 1. the i2c characteristics are the requirements from the i2c bus specification rev03. they are guaranteed by design when the i2cx_timing register is correctly programmed (refer to re ference manual). these characteristics are not tested in production. 2. the maximum t hd;dat could be 3.45 s, 0.9 s and 0.45 s for standard mode, fast mode and fast mode plus, but must be less than the maximum of t vd;dat or t vd;ack by a transition time.
electrical characteristics stm32f373xx 92/136 docid022691 rev 5 figure 23. i 2 c bus ac waveforms and measurement circuit 1. legend: rs: series protection resi stors. rp: pull-up resistors. v dd_i2c : i2c bus supply. table 57. i 2 c analog filter characteristics (1) 1. guaranteed by design, not tested in production. symbol parameter min max unit t af maximum pulse width of spikes that are suppressed by the analog filter 50 (2) 2. spikes width below t af (min) are filtered. 260 (3) 3. spikes width above t af (max) are not filtered. ns 069 5v ,  &exv 5s 5v 9 ''b,& 0&8 6'$ 6&/ 5s 9 ''b,& dpoujovfe dpoujovfe 4%" 4$- 4%" 4$-             u g u g u s u s u 46%"5 u )%%"5 u )*() u 7%%"5 u g 4$- u -08 uidmpdl tudmpdldzdmf u 4645" u )%45" u 41 u 7%"$, u 46450 u #6' uidmpdl 4 s 4 1 4 )%45"
docid022691 rev 5 93/136 stm32f373xx electrical characteristics 114 spi/i 2 s characteristics unless otherwise specified, the parameters given in table 58 for spi or in table 59 for i 2 s are derived from tests performed under ambient temperature, f pclkx frequency and v dd supply voltage conditions summarized in table 22 . refer to section 6.3.14: i/o port characteristics for more details on the input/output alternate function characteristics (n ss, sck, mosi, miso for spi and ws, ck, sd for i 2 s). table 58. spi characteristics symbol parameter conditions min max unit f sck 1/t c(sck) (1) spi clock frequency master mode - 18 mhz slave mode - 18 t r(sck) t f(sck) (1) spi clock ri se and fall time capacitive load: c = 30 pf - 8 ns ducy(sck) (1) spi slave input clock duty cycle slave mode 30 70 % t su(nss) (1) 1. data based on characterization results, not tested in production. nss setup time slave mode 2tpclk - ns t h(nss) (1) nss hold time slave mode 4tpclk - t w(sckh) (1) t w(sckl) (1) sck high and low time master mode, f pclk = 36 mhz, presc = 4 tpclk/2 - 3 tpclk/2 + 3 t su(mi) (1) t su(si) (1) data input setup time master mode 5.5 - slave mode 6.5 - t h(mi) (1) data input hold time master mode 5 - t h(si) (1) slave mode 5 - t a(so) (1)(2) 2. min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. data output access time slave mode, f pclk = 24 mhz 0 4tpclk t dis(so) (1)(3) 3. min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in hi-z. data output disable time slave mode 0 24 t v(so) (1) data output valid time slave mode (after enable edge) - 39 t v(mo) (1) data output valid time master mode (after enable edge) - 3 t h(so) (1) data output hold time slave mode (after enable edge) 15 - t h(mo) (1) master mode (after enable edge) 4 -
electrical characteristics stm32f373xx 94/136 docid022691 rev 5 figure 24. spi timing diagram - slave mode and cpha = 0 figure 25. spi timing diagram - slave mode and cpha = 1 (1) 1. measurement points are done at 0.5v dd level and with external c l = 30 pf . dlf ^</v?? w,a  dk^/ / ewhd d/^k khd whd w,a  d^  k hd d^ /e /d khd >^ /e >^ khd wk>a wk>a /d /e e^^]v?? ?^h~e^^ ?~^< ?z~e^^ ?~^k ?~^<,?~^<> ?~^k ?z~^k ??~^<?(~^< ?]?~^k ??~^/ ?z~^/ dl ^</v?? w,a dk^ / /ewhd d/^ k khd w hd w,a d^  k h d d^ /e / d khd >^ /e >^ khd wk>a wk>a /d /e ? ^h~e^^ ? ~^< ? z~e^^ ? ~^k ? ~^>, ? ~^>> ? ~^k ? z~^k ? ?~^> ? (~^> ? ]?~^k ? ?~^/ ? z~^/ e^^]v??
docid022691 rev 5 95/136 stm32f373xx electrical characteristics 114 figure 26. spi timing diagram - master mode (1) 1. measurement points are done at 0.5v dd level and with external c l = 30 pf . ai6 3#+/utput #0(!  -/3) /54054 -)3/ ).0 54 #0(!  -3 "). - 3"/54 ") 4). ,3"/54 ,3"). #0/, #0/, " ) 4/54 .33input t c3#+ t w3#+( t w3#+, t r3#+ t f3#+ t h-) (igh 3#+/utput #0(! #0(! #0/, #0/, t su-) t v-/ t h-/
electrical characteristics stm32f373xx 96/136 docid022691 rev 5 table 59. i 2 s characteristics symbol parameter conditions min max unit ducy(sck) (1) i2s slave input clock duty cycle slave mode 30 70 % f ck (1) 1/t c(ck) i 2 s clock frequency master mode (data: 16 bits, audio frequency = 48 khz) 1.528 1.539 mhz slave mode 0 12.288 t r(ck) (1) t f(ck) i 2 s clock rise and fall time capacitive load c l =30pf - 8 ns t v(ws) (1) ws valid time master mode 4 - t h(ws) (1) ws hold time master mode 4 - t su(ws) (1) ws setup time slave mode 2 - t h(ws) (1) ws hold time slave mode - - t w(ckh) (1) i2s clock high time master f pclk = 16 mhz, audio frequency = 48 khz 306 - t w(ckl) (1) i2s clock low time 312 - t su(sd_mr) (1) data input setup time master receiver 6 - t su(sd_sr) (1) slave receiver 3 - t h(sd_mr) (1) data input hold time master receiver 1.5 - t h(sd_sr) (1) slave receiver 1.5 - t v(sd_st) (1) data output valid time slave transmitter (after enable edge) -16 t h(sd_st) (1) data output hold time slave transmitter (after enable edge) 16 - t v(sd_mt) (1) data output valid time master transmitter (after enable edge) -2 t h(sd_mt) (1) data output hold time master transmitter (after enable edge) 0- 1. data based on design simulation, not tested in production.
docid022691 rev 5 97/136 stm32f373xx electrical characteristics 114 figure 27. i 2 s slave timing diagram (philips protocol) (1) 1. measurement points are done at 0.5 v dd level and with external c l = 30 pf. 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. figure 28. i 2 s master timing diagram (philips protocol) (1) 1. measurement points are done at 0.5 v dd level and with external c l = 30 pf. 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. &.,qsxw &32/  &32/  w f &. :6lqsxw 6' wudqvplw 6' uhfhlyh w z &.+ w z &./ w vx :6 w y 6'b67 w k 6'b67 w k :6 w vx 6'b65 w k 6'b65 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%wudqvplw dle /6%uhfhlyh  /6%wudqvplw  #+output #0/, #0/, t c#+ 73output 3$ receive 3$ transmit t w#+( t w#+, t su3$?-2 t v3$?-4 t h3$?-4 t h73 t h3$?-2 -3"receive "itnreceive ,3"receive -3"transmit "itntransmit ,3"transmit aib t f#+ t r#+ t v73 ,3"receive  ,3"transmit 
electrical characteristics stm32f373xx 98/136 docid022691 rev 5 6.3.17 12-bit adc characteristics unless otherwise specified, the parameters given in table 60 are preliminary values derived from tests performed under ambient temperature, f pclk2 frequency and v dda supply voltage conditions summarized in table 22 . note: it is recommended to perform a calibration after each power-up. table 60. adc characteristics symbol paramete r conditions min typ max unit v dda power supply 2.4 - 3.6 v v ref+ positive reference voltage 2.4 - v dda v i dda(adc) (1) current consumption from v dda v dd = v dda = 3.3 v - 0.9 - ma i vref current on the v ref input pin - 160 (2) 220 (2) a f adc adc clock frequency 0.6 - 14 mhz f s (3) sampling rate 0.05 - 1 mhz f trig (3) external trigger frequency f adc = 14 mhz - - 823 khz --171/f adc v ain conversion voltage range 0 (v ssa or v ref- tied to ground) -v ref+ v r src (3) signal source impedance see equation 1 and ta ble 6 1 for details --50 ? r adc (3) sampling switch resistance - - 1 ? c adc (3) internal sample and hold capacitor --8pf t cal (3) calibration time f adc = 14 mhz 5.9 s 83 1/f adc t lat (3) injection trigger conversion latency f adc = 14 mhz - - 0.214 s --2 (4) 1/f adc t latr (3) regular trigger conversion latency f adc = 14 mhz - - 0.143 s --2 (4) 1/f adc t s (3) sampling time f adc = 14 mhz 0.107 - 17.1 s 1.5 - 239.5 1/f adc t stab (3) power-up time - - 1 s t conv (3) total conversion time (including sampling time) f adc = 14 mhz 1 - 18 s 14 to 252 (t s for sampling +12.5 for successive approximation) 1/f adc 1. during conversion of the sampled value (12.5 x ad c clock period), an additional consumption of 100 a on i dda and 60 a on i dd is present 2. based on characterization, not tested in production. 3. guaranteed by design, no t tested in production. 4. for external triggers, a delay of 1/f pclk2 must be added to the latency specified in table 60
docid022691 rev 5 99/136 stm32f373xx electrical characteristics 114 equation 1: r src max formula the formula above ( equation 1 ) is used to determine the maximum external signal source impedance allowed for an error below 1/4 of lsb. here n = 12 (from 12-bit resolution). table 61. r src max for f adc = 14 mhz (1) 1. guaranteed by design, not tested in production. t s (cycles) t s (s) r src max (k ) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 50 239.5 17.1 50 table 62. adc accuracy (1)(2) (3) 1. adc dc accuracy values are measured after internal calibration. symbol parameter test conditions typ max (4) unit et total unadjusted error f adc = 14 mhz, r src < 10 k , v dda = 3 v to 3.6 v t a = 25 c 1.3 3 lsb eo offset error 1 2 eg gain error 0.5 1.5 ed differential linearity error 0.7 1 el integral linearity error 0.8 1.5 et total unadjusted error f adc = 14 mhz, r src < 10 k , v dda = 2.7 v to 3.6 v t a = -40 to 105 c 3.3 4 lsb eo offset error 1.9 2.8 eg gain error 2.8 3 ed differential linearity error 0.7 1.3 el integral linearity error 1.2 1.7 et total unadjusted error f adc = 14 mhz, r src < 10 k , v dda = 2.4 v to 3.6 v t a = 25 c 3.3 4 lsb eo offset error 1.9 2.8 eg gain error 2.8 3 ed differential linearity error 0.7 1.3 el integral linearity error 1.2 1.7 r src t s f adc c adc 2 n2 + () ln --------------------------------------------------------------- - r adc ? <
electrical characteristics stm32f373xx 100/136 docid022691 rev 5 figure 29. adc accuracy characteristics figure 30. typical connecti on diagram using the adc 1. refer to table 60 for the values of r src , r adc and c adc . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. general pcb design guidelines power supply decoupling should be performed as shown in figure 9 . the 10 nf capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 2. adc accuracy vs. negative injection current: injecti ng a negative current on any analog input pins should be avoided as this significantly reduces the accura cy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to ground) to analog pins which may potentially inject negative currents. any positive injection current wi thin the limits specified for i inj(pin) and i inj(pin) in section 6.3.14 does not affect the adc accuracy. 3. better performance may be achieved in restricted v dda , frequency and temperature ranges. 4. data based on characterization results, not tested in production. ( 2 ( * /6% ,'($/  ([dpsohridqdfwxdo wudqvihufxuyh  7khlghdowudqvihufxuyh  (qg srlqwfruuhodwlrqolqh ( 7 7rwdo 8qdgmxvwhg (uuru pd[lpxp ghyldwlrq ehwzhhq wkhdfwxdodqgwkhlghdowudqvihu fxuyhv ( 2 2iivhw(uurughyldwlrqehwzhhqwkhiluvwdfwxdo wudqvlwlrqdqgwkh iluvwlghdorqh ( * *dlq (uuru ghyldwlrq ehwzhhq wkh odvw lghdo wudqvlwlrqdqgwkh odvwdfwxdorqh ( ' 'liihuhqwldo/lqhdulw\(uuru pd[lpxpghyldwlrq ehwzhhq dfwxdovwhsvdqgwkhlghdorqh ( / ,qwhjudo /lqhdulw\ (uuru pd[lpxp ghyldwlrq ehwzhhq dq\ dfwxdo wudqvlwlrq dqg wkh hqg srlqw fruuhodwlrqolqh                   ( 7 ( ' ( /  9 ''$ 9 66$ -36 -36 9 '' $,1[ , / ? ?$  9 9 7 2 32#  & sdudvlwlf 32#  9 9 7 5 $'&  elw frqyhuwhu & $'&  6dpsohdqgkrog$'& frqyhuwhu 7
docid022691 rev 5 101/136 stm32f373xx electrical characteristics 114 6.3.18 dac electri cal specifications table 63. dac characteristics symbol parameter min typ max unit comments v dda analog supply voltage 2.4 - 3.6 v v ref+ reference supply voltage 2.4 - 3.6 v v ref+ must always be below v dda v ssa ground 0 - 0 v r load (1) resistive load with buffer on 5- - k r o (1) impedance output with buffer off -- 15 k when the buffer is off, the minimum resistive load between dac_out and v ss to have a 1% accuracy is 1.5 m c load (1) capacitive load - - 50 pf maximum capacitive load at dac_out pin (when the buffer is on). dac_out min (1) lower dac_out voltage with buffer on 0.2 - - v it gives the maximum output excursion of the dac. it corresponds to 12-bit input code (0x0e0) to (0xf1c) at v ref+ = 3.6 v and (0x155) and (0xeab) at v ref+ = 2.4 v dac_out max (1) higher dac_out voltage with buffer on --v dda ? 0.2 v dac_out min (1) lower dac_out voltage with buffer off -0.5 - mv it gives the maximum output excursion of the dac. dac_out max (1) higher dac_out voltage with buffer off -- v ref+ ? 1lsb v i ddvref+ (3) dac dc current consumption in quiescent mode (standby mode) - - 220 a with no load, worst code (0xf1c) at v ref+ = 3.6 v in terms of dc consumption on the inputs i dda (3) dac dc current consumption in quiescent mode (2) - - 380 a with no load, middle code (0x800) on the inputs - - 480 a with no load, worst code (0xf1c) at v ref+ = 3.6 v in terms of dc consumption on the inputs dnl (3) differential non linearity difference between two consecutive code-1lsb) -- 0.5 lsb given for the dac in 10-bit configuration -- 2 lsb given for the dac in 12-bit configuration inl (3) integral non linearity (difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 1023) -- 1lsb given for the dac in 10-bit configuration -- 4lsb given for the dac in 12-bit configuration
electrical characteristics stm32f373xx 102/136 docid022691 rev 5 figure 31. 12-bit buffered /non-buffered dac 1. the dac integrates an output buffer that can be used to r educe the output impedance and to dr ive external loads directly without the use of an external operational amplifier. the buffer can be bypassed by configuring the boffx bit in the dac_cr register. offset (3) offset error (difference between measured value at code (0x800) and the ideal value = v ref+ /2) -- 10mv -- 3lsb given for the dac in 10-bit at v ref+ = 3.6 v -- 12lsb given for the dac in 12-bit at v ref+ = 3.6 v gain error (3) gain error - - 0.5 % given for the dac in 12bit configuration t settling (3) settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when dac_out reaches final value 1lsb -3 4 sc load 50 pf, r load 5 k update rate (3) max frequency for a correct dac_out change when small variation in the input code (from code i to i+1lsb) -- 1 ms/ s c load 50 pf, r load 5 k t wakeup (3) wakeup time from off state (setting the enx bit in the dac control register) - 6.5 10 s c load 50 pf, r load 5 k input code between lowest and highest possible ones. psrr+ (1) power supply rejection ratio (to v dda ) (static dc measurement --67 -40 dbno r load , c load = 50 pf 1. guaranteed by design, not tested in production. 2. quiescent mode refers to the state of the dac keeping a steady value on the output, so no dynamic consumption is involved. 3. guaranteed by characterization, not tested in production. table 63. dac characteristics (continued) symbol parameter min typ max unit comments 5 /2$' & /2$' '$&[b287 %xiihu  elw gljlwdowr dqdorj frqyhuwhu dl
docid022691 rev 5 103/136 stm32f373xx electrical characteristics 114 6.3.19 comparator characteristics table 64. comparator characteristics symbol parameter conditions min typ max (1) unit v dda analog supply voltage 2 - 3.6 v v in comparator input voltage range 0-v dda v bg scaler input voltage - 1.2 - v sc scaler offset voltage - 5 10 mv t s_sc scaler startup time from power down --0.1ms t start comparator startup time startup time to reach propagation delay specification - - 60 s t d propagation delay for 200 mv step with 100 mv overdrive ultra-low power mode - 2 4.5 s low power mode - 0.7 1.5 medium power mode - 0.3 0.6 high speed mode v dda 2.7 v - 50 100 ns v dda < 2.7 v - 100 240 propagation delay for full range step with 100 mv overdrive ultra-low power mode - 2 7 s low power mode - 0.7 2.1 medium power mode - 0.3 1.2 high speed mode v dda 2.7 v - 90 180 ns v dda < 2.7 v - 110 300 v offset comparator offset error - 4 10 mv dv offset /dt offset error temperature coefficient -18 - v/c i dd(comp) comp current consumption ultra-low power mode - 1.2 1.5 a low power mode - 3 5 medium power mode - 10 15 high speed mode - 75 100
electrical characteristics stm32f373xx 104/136 docid022691 rev 5 6.3.20 temperature sensor characteristics v hys comparator hysteresis no hysteresis (compxhyst[1:0]=00) -0 - mv low hysteresis (compxhyst[1:0]=01) high speed mode 3 8 13 all other power modes 510 medium hysteresis (compxhyst[1:0]=10) high speed mode 7 15 26 all other power modes 919 high hysteresis (compxhyst[1:0]=11) high speed mode 18 31 49 all other power modes 19 40 1. guaranteed by design, not tested in production. table 64. comparator characteristics (continued) symbol parameter conditions min typ max (1) unit table 65. temperature sensor calibration values calibration value name description memory address ts_cal1 ts adc raw data acquired at temperature of 30 c, v dda = 3.3 v 0x1fff f7b8 - 0x1fff f7b9 ts_cal2 ts adc raw data acquired at temperature of 110 c v dda = 3.3 v 0x1fff f7c2 - 0x1fff f7c3 table 66. ts characteristics symbol parameter min typ max unit t l v sense linearity with temperature - 1 2c avg_slope (1) average slope 4.0 4.3 4.6 mv/c v 25 voltage at 25 c 1.34 1.43 1.52 v t start (1) 1. guaranteed by design, not tested in production. startup time 4 - 10 s t s_temp (2)(1) 2. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the temperature 17.1 - - s
docid022691 rev 5 105/136 stm32f373xx electrical characteristics 114 6.3.21 v bat monitoring characteristics 6.3.22 timer characteristics the parameters given in table 68 are guaranteed by design. refer to section 6.3.14: i/o port characteristics for details on the input/output alternate function characteristics (output compare, i nput capture, external clock, pwm output). table 67. v bat monitoring characteristics symbol parameter min typ max unit r resistor bridge for v bat -50-k q ratio on v bat measurement - 2 - er (1) 1. guaranteed by design, not tested in production. error on q -1 - +1 % t s_vbat (2) 2. shortest sampling time can be determined in the application by multiple iterations. adc sampling time when reading the v bat 1mv accuracy 5- -s table 68. timx (1) (2) characteristics 1. timx is used as a general term to refer to the tim2, tim3, tim4, tim5, tim6, tim7, tim12, tim13, tim14, tim15, tim16 , tim17, tim18 and tim19 timers. 2. data based on characterization results, not tested in production. symbol parameter conditions min max unit t res(tim) timer resolution time 1-t timxclk f timxclk = 72 mhz 13.9 - ns f ext timer external clock frequency on ch1 to ch4 0f timxclk /2 mhz f timxclk = 72 mhz 0 24 mhz res tim timer resolution timx (except tim2) -16 bit tim2 - 32 t counter 16-bit counter clock period 1 65536 t timxclk f timxclk = 72 mhz 0.0139 910 s t max_coun t maximum possible count with 32-bit counter - 65536 65536 t timxclk f timxclk = 72 mhz - 59.65 s table 69. iwdg min/max timeout period at 40 khz (lsi) (1)(2) prescaler divider pr[2:0] bits min timeout (ms) rl[11:0]= 0x000 max timeout (ms) rl[11:0]= 0xfff /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4
electrical characteristics stm32f373xx 106/136 docid022691 rev 5 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 7 6.4 26214.4 1. these timings are given for a 40 kh z clock but the microcontroller?s in ternal rc frequency can vary from 30 to 60 khz. moreover, given an exact rc oscillator frequency, the exact timings still depend on the phasing of the apb interface clock versus the lsi clock so t hat there is always a full rc period of uncertainty. 2. data based on characterization results, not tested in production. table 70. wwdg min-max timeout value @72 mhz (pclk) prescaler wdgtb min timeout value max timeout value 1 0 0.05687 3.6409 2 1 0.1137 7.2817 4 2 0.2275 14.564 8 3 0.4551 29.127 table 69. iwdg min/max timeout pe riod at 40 khz (lsi) (continued) (1)(2) prescaler divider pr[2:0] bits min timeout (ms) rl[11:0]= 0x000 max timeout (ms) rl[11:0]= 0xfff
docid022691 rev 5 107/136 stm32f373xx electrical characteristics 114 6.3.23 usb characteristics table 71. usb startup time symbol parameter max unit t startup (1) 1. guaranteed by design, not tested in production. usb transceiver startup time 1 s table 72. usb dc electrical characteristics symbol parameter conditions min. (1) 1. all the voltages are measured from the local ground potential. max. (1) unit input levels v dd usb operating voltage (2) 2. to be compliant with the usb 2.0 full-speed electrical specification, the usb_dp (d+) pin should be pulled up with a 1.5 k resistor to a 3.0-to-3.6 v voltage range. 3.0 (3) 3. the stm32f3xxx usb functionality is ensured down to 2. 7 v but not the full usb el ectrical characteristics which are degraded in the 2.7-to-3.0 v v dd voltage range. 3.6 v v di (4) 4. guaranteed by design, not tested in production. differential input sensitivity (for usb compliance) i(usb_dp, usb_dm) 0.2 - v v cm (4) differential common mode range includes v di range 0.8 2.5 v se (4) single ended receiver threshold 1.3 2.0 output levels v ol static output level low r l of 1.5 k to 3.6 v (5) 5. r l is the load connected on the usb drivers -0.3 v v oh static output level high r l of 15 k to v ss (5) 2.8 3.6
electrical characteristics stm32f373xx 108/136 docid022691 rev 5 figure 32. usb timings: definition of data signal rise and fall time 6.3.24 can (controller ar ea network) interface refer to section 6.3.14: i/o port characteristics for more details on the input/output alternate function characteristics (can_tx and can_rx). 6.3.25 sdadc characteristics dl w i 66 w u 9 &56 9 'liihuhqwldo gdwdolqhv &urvvryhu srlqwv table 73. usb: full-speed electrical characteristics (1) symbol parameter conditions min typ max unit driver characteristics t r rise time (2) c l = 50 pf 4 - 20 ns t f fall time (2) c l = 50 pf 4 - 20 ns t rfm rise/ fall time matching t r /t f 90 - 110 % v crs output signal crossover voltage - 1.3 - 2.0 v output driver impedance (3) z drv driving high and low 28 40 44 1. guaranteed by design, not tested in production. 2. measured from 10% to 90% of the data signal. for more detaile d informations, please refer to usb specification - chapter 7 (version 2.0). 3. no external termination series resistors are required on usb_dp (d+) and usb_dm (d-), the matching impedance is already included in the embedded driver. table 74. sdadc characteristics (1) symbol parameter conditions min typ max unit note v ddsdx power supply slow mode (f adc = 1.5 mhz) 2.2 - v dda v fast mode (f adc = 6 mhz) 2.4 - v dda f adc sdadc clock frequency slow mode (f adc = 1.5 mhz) 0.5 1.5 1.65 mhz fast mode (f adc = 6 mhz) 0.5 6 6.3 v refsd+ positive ref. voltage 1.1 - v ddsdx v
docid022691 rev 5 109/136 stm32f373xx electrical characteristics 114 v refsd- negative ref. voltage -v ssa -v i ddsdx supply current (v ddsdx = 3.3 v) fast mode (f adc = 6 mhz) - 800 1200 a slow mode (f adc = 1.5 mhz) - - 600 standby - - 200 power down - - 2.5 sd_adc off - - 1 v ain common input voltage range single ended mode (zero reference) v ssa - v refsd+ /gain v voltage on ainp or ainn pin single ended offset mode v ssa - v refsd+/ (gain*2) differential mode v ssa -v ddsdx v diff differential input voltage differential mode only -v ref sd+/ (gain*2) - v refsd+ / (gain*2) differential voltage between ainp and ainn f s sampling rate slow mode (f adc = 1.5 mhz) - 4.166 - khz f adc /360 slow mode one channel only (f adc = 1.5 mhz) -12.5 - f adc /120 fast mode multiplexed channel (f adc = 6 mhz) - 16.66 - f adc /360 fast mode one channel only (f adc = 6 mhz) -50 - f adc /120 t conv conversion time - 1/fs - s rain analog input impedance one channel, gain = 0.5, f adc = 1.5 mhz - 540 - k see reference manual for detailed description one channel, gain = 0.5, f adc = 6 mhz - 135 - one channel, gain = 8, f adc = 6 mhz - 47 - t calib calibration time f adc = 6 mhz, one offset calibration - 5120 - s 30720/f adc t stab stabilization time from power down f adc = 6 mhz - 100 - s 600/f adc , 75/f adc if slowck =1 t standby wakeup from standby time f adc = 6 mhz - 50 - s 300/f adc f adc = 1.5 mhz - 50 - 75/f adc if slowck =1 table 74. sdadc characteristics (continued) (1) symbol parameter conditions min typ max unit note
electrical characteristics stm32f373xx 110/136 docid022691 rev 5 eo offset error differential mode gain = 1 f adc = 1.5 mhz v ddsdx = 3.3 v refsd+ = 3.3 --110 uv after offset calibration f adc = 6mhz v refsd+ = 1.2 --110 v refsd+ = 3.3 - - 100 gain = 8 f adc = 6mhz v refsd+ = 1.2 -- 70 v refsd+ = 3.3 - - 100 f adc = 1.5 mhz v refsd+ = 3.3 -- 90 single ended mode gain = 1 v refsd+ = 1.2 - - 2100 v refsd+ = 3.3 - - 2000 gain = 8 v refsd+ = 1.2 - - 1500 v refsd+ = 3.3 - - 1800 d voffsettemp offset drift with temperature differential or single ended mode, gain = 1, v ddsdx = 3.3 v -10 15uv/k eg gain error all gains, differential mode, single ended mode -2.4 -2.7 -3.1 % negative gain error = data result are greater than ideal egt gain drift with temperature gain = 1, differential mode, single ended mode -0 - ppm /k table 74. sdadc characteristics (continued) (1) symbol parameter conditions min typ max unit note
docid022691 rev 5 111/136 stm32f373xx electrical characteristics 114 el integral linearity error differential mode gain = 1 v ddsdx = 3.3 v refsd+ = 1.2 -- 16 lsb v refsd+ = 3.3 -- 14 gain = 8 v refsd+ = 1.2 -- 26 v refsd+ = 3.3 -- 14 single ended mode gain = 1 v refsd+ = 1.2 -- 31 v refsd+ = 3.3 -- 23 gain = 8 v refsd+ = 1.2 -- 80 v refsd+ = 3.3 -- 35 ed differential linearity error differential mode gain = 1 v ddsdx = 3.3 v refsd+ = 1.2 --2.4 lsb v refsd+ = 3.3 --1.8 gain = 8 v refsd+ = 1.2 --3.6 v refsd+ = 3.3 --2.9 single ended mode gain = 1 v refsd+ = 1.2 --3.2 v refsd+ = 3.3 --2.8 gain = 8 v refsd+ = 1.2 --4.1 v refsd+ = 3.3 --3.3 table 74. sdadc characteristics (continued) (1) symbol parameter conditions min typ max unit note
electrical characteristics stm32f373xx 112/136 docid022691 rev 5 snr (4) signal to noise ratio differential mode gain = 1 f adc = 1.5 mhz v ddsdx = 3.3 v refsd+ = 3.3 (2) 84 85 - db f adc = 6 mhz v refsd+ = 1.2 (3) 86 88 - v refsd+ = 3.3 88 92 - gain = 8 f adc = 6 mhz v refsd+ = 1.2 (3) 76 78 - v refsd+ = 3.3 82 86 - f adc = 1.5 mhz v refsd+ = 3.3 (2) 76 80 - single ended mode gain = 1 f adc = 1.5mhz v refsd+ = 3.3 80 84 - f adc = 6mhz v refsd+ = 1.2 (3) 77 81 - v refsd+ = 3.3 85 90 - gain = 8 f adc = 6mhz v refsd+ = 1.2 (3) 66 71 - v refsd+ = 3.3 74 78 - table 74. sdadc characteristics (continued) (1) symbol parameter conditions min typ max unit note
docid022691 rev 5 113/136 stm32f373xx electrical characteristics 114 sinad (4) signal to noise and distortion ratio differential mode gain =1 f adc = 1.5 mhz v ddsdx = 3.3 v refsd+ = 3.3 (2) 76 77 - db enob = sinad/ 6.02 -0.292 f adc = 6 mhz v refsd+ = 1.2 (3) 75 76 - v refsd+ = 3.3 76 77 - gain =8 f adc = 6 mhz v refsd+ = 1.2 (3) 70 74 - v refsd+ = 3.3 79 85 - f adc = 1.5 mhz v refsd+ = 3.3 (2) 75 81 - single ended mode gain =1 f adc = 1.5mhz v refsd+ = 3.3 72 73 - f adc = 6mhz v refsd+ = 1.2 (3) 68 71 - v refsd+ = 3.3 72 73 - gain =8 f adc = 6mhz v refsd+ = 1.2 (3) 60 64 - v ref = 3.3 67 72 - thd (4) to ta l harmonic distortion differential mode gain =1 f adc = 1.5 mhz v ddsdx = 3.3 v refsd+ = 3.3 (2) --77-76 db f adc = 6mhz v refsd+ = 1.2 (3) --77-76 v refsd+ = 3.3 --77-76 gain =8 f adc = 6mhz v refsd+ = 1.2 (3) --85-70 v refsd+ = 3.3 --93-80 f adc = 1.5 mhz v refsd+ = 3.3 (2) --93-83 single ended mode gain =1 f adc = 6mhz v refsd+ = 1.2 (3) --72-68 v refsd+ = 3.3 --74-72 gain =8 f adc = 6mhz v refsd+ = 1.2 (3) --66-61 v refsd+ = 3.3 --75-70 table 74. sdadc characteristics (continued) (1) symbol parameter conditions min typ max unit note
electrical characteristics stm32f373xx 114/136 docid022691 rev 5 1. data based on characterization results, not tested in production. 2. for f adc lower than 5 mhz, there will be a performance degr adation of around 2 db due to flicker noise increase. 3. if the reference value is lower than 2.4 v, there will be a performance degradation proportional to the reference supply drop , according to this formula: 20*log10(v ref /2.4) db 4. snr, thd, sinad parameters are valid for frequency bandwidth 20hz - 1khz. input signal frequency is 300hz (for f adc =6mhz) and 100hz (for f adc =1.5mhz). table 75. vrefsd+ pin characteristics (1) symbol parameter conditions min typ max unit note v refint internal reference voltage buffered embedded reference voltage (1.2 v) -1.2- v see section 6.3.4: embedded reference voltage on page 60 embedded reference voltage amplified by factor 1.5 -1.8- v c vrefsd+ (2) reference voltage filtering capacitor v refsd+ = v refint 1000 10000 nf r vrefsd+ reference voltage input impedance fast mode (f adc = 6 mhz) -238- k see rm0313 reference manual for detailed description slow mode (f adc = 1.5 mhz) -952- 1. data based on characterization re sults, not tested in production. 2. if internal reference voltage is selected then this capaci tor is charged through internal resistance - typ. 300 ohm. if inte rnal reference source is selected through the reference voltage selection bits (refv<>?00? in sdadc_cr1 register), the application must first configure refv bits and then wait for ca pacitor charging. recommended waiting time is 3 ms if 1 f capacitor is used.
docid022691 rev 5 115/136 stm32f373xx package characteristics 130 7 package characteristics 7.1 package mechanical data in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark.
package characteristics stm32f373xx 116/136 docid022691 rev 5 figure 33. ufbga100 ? ultra fine pitch ba ll grid array, 7 x 7 mm, 0.50 mm pitch, package outline 1. drawing is not to scale. a1 ball pad corner top view s ide view bottom view a1 ball pad corner e d e1 e fe d1 fd 0.50 0.10 a1 a a2 1.75 1.75 0.10 z x y a0c2_me b table 76. ufbga100 ? ultra fine pitch ball gr id array, 7 x 7 mm, 0.50 mm pitch, package mechanical data symbol millimeters inches (1) min typ max min typ max a 0.46 0.53 0.6 0.0181 0.0209 0.0236 a1 0.06 0.08 0.1 0.0024 0.0031 0.0039 a2 0.4 0.45 0.5 0.0157 0.0177 0.0197 b 0.2 0.25 0.3 0.0079 0.0098 0.0118 d - 7 - - 0.2756 - d1 - 5.5 - - 0.2165 - e - 7 - - 0.2756 - e1 - 5.5 - - 0.2165 - e - 0.5 - - 0.0197 - fd - 0.75 - - 0.0295 - fe - 0.75 - - 0.0295 - 1. values in inches are converted from mm and rounded to 4 decimal digits.
docid022691 rev 5 117/136 stm32f373xx package characteristics 130 7.1.1 marking of engineer ing samples for ufbga100 the following figure shows the engineering sample marking for the ufbga100 package. only the information field containing the engineering sample marking is shown. figure 34. ufbga100 package top view 1. samples marked ?es? are to be considered as ?engineering samples?: i.e. they are intended to be sent to customer for electrical compatib ility evaluation and may be used to start customer qualification where specifically authorized by st in wr iting. in no event st will be liable for any customer usage in production. only if st has authorized in writing the customer qualification engineering samples can be used for reliability qualification trials. (qjlqhhulqjvdpsohpdunlqj  069 (6
package characteristics stm32f373xx 118/136 docid022691 rev 5 figure 35. lqfp100 ?14 x 14 mm 100-pin low-profile quad flat package outline 1. drawing is not to scale. e )$%.4)&)#!4)/. 0). '!5'%0,!.% mm 3%!4).' 0,!.% $ $ $ % % % + ccc # #         ,?-%?6 ! ! ! , , c b ! table 77. lqpf100 ? 14 x 14 mm low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 15.800 16.000 16.200 0.6220 0.6299 0.6378 d1 13.800 14.000 14.200 0.5433 0.5512 0.5591 d3 - 12.000 - - 0.4724 - e 15.800 16.000 16.200 0.6220 0.6299 0.6378
docid022691 rev 5 119/136 stm32f373xx package characteristics 130 figure 36. lqfp100 recommended footprint 1. dimensions are in millimeters. e1 13.800 14.000 14.200 0.5433 0.5512 0.5591 e3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 03.57 03.57 ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 77. lqpf100 ? 14 x 14 mm low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max 75 51 50 76 0.5 0.3 16.7 14.3 100 26 12.3 25 1.2 16.7 1 ai14906b
package characteristics stm32f373xx 120/136 docid022691 rev 5 7.1.2 marking of engineer ing samples for lqfp100 the following figure shows the engineering sample marking for the lqfp100 package. only the information field containing the engineering sample marking is shown. figure 37. lqfp100 package top view 1. samples marked ?es? are to be considered as ?engineering samples?: i.e. they are intended to be sent to customer for electrical compatib ility evaluation and may be used to start customer qualification where specifically authorized by st in wr iting. in no event st will be liable for any customer usage in production. only if st has authorized in writing the customer qualification engineering samples can be used for reliability qualification trials. .47 (qjlqhhulqjvdpsohpdunlqj  (6
docid022691 rev 5 121/136 stm32f373xx package characteristics 130 figure 38. lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline 1. drawing is not to scale. ! ! ! 3%!4).' 0,!.% ccc # b # c ! , , + '!5'%0,!.% mm )$%.4)&)#!4)/. 0). $ $ $ e         % % % 7?-%?6 table 78. lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 11.800 12.000 12.200 0.4646 0.4724 0.4803 d1 9.800 10.000 10.200 0.3858 0.3937 0.4016 d3 - 7.500 - - 0.2953 -
package characteristics stm32f373xx 122/136 docid022691 rev 5 figure 39. lqfp64 recommended footprint 1. dimensions are in millimeters. e 11.800 12.000 12.200 0.4646 0.4724 0.4803 e1 9.800 10.000 10.200 0.3858 0.3937 0.4016 e3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 03.57 03.57 ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 78. lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                aib
docid022691 rev 5 123/136 stm32f373xx package characteristics 130 7.1.3 marking of engin eering samples for lqfp64 the following figure shows the engineering sample marking for the lqfp64 package. only the information field containing the engineering sample marking is shown. figure 40. lqfp64 package top view 1. samples marked ?es? are to be considered as ?engineering samples?: i.e. they are intended to be sent to customer for electrical compatib ility evaluation and may be used to start customer qualification where specifically authorized by st in wr iting. in no event st will be liable for any customer usage in production. only if st has authorized in writing the customer qualification engineering samples can be used for reliability qualification trials. (qjlqhhulqjvdpsohpdunlqj  .47 (6
package characteristics stm32f373xx 124/136 docid022691 rev 5 figure 41. lqfp48 ? 7 x 7 mm, 48-pin low-profile quad flat package outline 1. drawing is not to scale. "?-%?6 0). )$%.4)&)#!4)/. ccc # # $ mm '!5'%0,!.% b ! ! ! c ! , , $ $ % % % e         3%!4).' 0,!.% + table 79. lqfp48 ? 7 x 7 mm, low-profile quad flat package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 8.800 9.000 9.200 0.3465 0.3543 0.3622 d1 6.800 7.000 7.200 0.2677 0.2756 0.2835 d3 - 5.500 - - 0.2165 - e 8.800 9.000 9.200 0.3465 0.3543 0.3622 e1 6.800 7.000 7.200 0.2677 0.2756 0.2835 e3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 -
docid022691 rev 5 125/136 stm32f373xx package characteristics 130 figure 42. lqfp48 recommended footprint 1. dimensions are in millimeters. l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k03.57 03.57 ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 79. lqfp48 ? 7 x 7 mm, low-profile quad flat package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                  aid  
package characteristics stm32f373xx 126/136 docid022691 rev 5 7.1.4 marking of engin eering samples for lqfp48 the following figure shows the engineering sample marking for the lqfp48. only the information field containing the engi neering sample marking is shown. figure 43. lqfp48 package top view 1. samples marked ?es? are to be considered as ?engineering samples?: i.e. they are intended to be sent to customer for electrical compatib ility evaluation and may be used to start customer qualification where specifically authorized by st in wr iting. in no event st will be liable for any customer usage in production. only if st has authorized in writing the customer qualification engineering samples can be used for reliability qualification trials. 069 (qjlqhhulqjvdpsohpdunlqj (6 
docid022691 rev 5 127/136 stm32f373xx package characteristics 130 7.2 thermal characteristics the maximum chip junction temperature (t j max) must never exceed the values given in table 22: general operating conditions on page 57 . the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max x q ja ) where: ? t a max is the maximum ambient temperature in c, ? q ja is the package junction-to-ambient thermal resistance, in c/w, ? p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), ? p int max is the product of i dd and v dd , expressed in watts. th is is the maximum chip internal power. p i/o max represents the maximum power dissipation on output pins where: p i/o max = s (v ol i ol ) + s((v dd ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. 7.2.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). available from www.jedec.org table 80. package thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient lqfp64 - 10 10 mm / 0.5 mm pitch 45 c/w thermal resistance junction-ambient lqfp48 - 7 7 mm 55 thermal resistance junction-ambient lqfp100 - 14 14 mm / 0.5 mm pitch 46 thermal resistance junction-ambient bga100 - 7 x 7 mm 59
package characteristics stm32f373xx 128/136 docid022691 rev 5 7.2.2 selecting the product temperature range when ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in section 8: part numbering . each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a spec ific maximum junction temperature. as applications do not commonly use the stm32f 373xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature ra nge will be best suited to the application. the following examples show how to calculat e the temperature range needed for a given application. example 1: high-performance application assuming the following ap plication conditions: maximum ambient temperature t amax = 82 c (measured according to jesd51-2), i ddmax = 50 ma, v dd = 3.5 v, maximum 3 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v and maximum 2 i/os used at the same time in output at low level with i ol = 20 ma, v ol = 1.3 v p intmax = 50 ma 3.5 v= 175 mw p iomax = 3 8 ma 0.4 v + 2 20 ma 1.3 v = 61.6 mw this gives: p intmax = 175 mw and p iomax = 61.6 mw: p dmax = 175 + 61.6 = 236.6 mw thus: p dmax = 236.6 mw using the values obtained in table 80 t jmax is calculated as follows: ? for lqfp64, 45c/w t jmax = 82 c + (45c/w 236.6 mw) = 82 c + 10.65 c = 92.65 c this is within the range of the suffix 6 version parts (?40 < t j < 105 c). in this case, parts must be ordered at leas t with the temperature range suffix 6 (see section 8: part numbering ). example 2: high-temperature application using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature t j remains within the specified range. assuming the following ap plication conditions: maximum ambient temperature t amax = 115 c (measured according to jesd51-2), i ddmax = 20 ma, v dd = 3.5 v, maximum 9 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v p intmax = 20 ma 3.5 v= 70 mw p iomax = 9 8 ma 0.4 v = 28.8 mw this gives: p intmax = 70 mw and p iomax = 28.8 mw: p dmax = 70 + 28.8 = 98.8 mw thus: p dmax = 98.8 mw
docid022691 rev 5 129/136 stm32f373xx package characteristics 130 using the values obtained in table 80 t jmax is calculated as follows: ? for lqfp100, 46c/w t jmax = 115 c + (46c/w 98.8 mw) = 115 c + 4.54 c = 119.5 c this is within the range of the suffix 7 version parts (?40 < t j < 125 c). in this case, parts must be ordered at leas t with the temperature range suffix 7 (see section 8: part numbering ). figure 44. lqfp64 p d max vs. t a 06y9                 6xiil[ 6xiil[ 3 '  p: 7 $  ?&
part numbering stm32f373xx 130/136 docid022691 rev 5 8 part numbering for a list of available options (memory, package, and so on) or for further information on any aspect of this device, please cont act your nearest st sales office. table 81. ordering information scheme example : stm32 f 373 r 8 t 6 x device family stm32 = arm-based 32-bit microcontroller product type f = general-purpose sub-family 373 = stm32f373xx pin count c = 48 pins r = 64 pins v = 100 pins code size 8 = 64 kbytes of flash memory b = 128 kbytes of flash memory c = 256 kbytes of flash memory package t = lqfp h = bga temperature range 6 = industrial temperature range, ?40 to 85 c 7 = industrial temperature range, ?40 to 105 c options xxx = programmed parts tr = tape and real
docid022691 rev 5 131/136 stm32f373xx revision history 135 9 revision history table 82. document revision history date revision changes 18-jun-2012 1 initial release. 07-sep-2012 2 added ?f? to all ?cortex-m4? occurences modified the shapes of figure 2: stm32f373xx lqfp48 pinout to figure 4: stm32f373xx lqfp100 pinout added two rows ?vrefsd+ - vddsd3? and ?vref+ - vdda? in table 19: voltage characteristics removed pb0 in footnote of table 19: voltage characteristics and in section 6.3.14: i/o port characteristics added a paragraph after ?...power up sequence? in section 6.2: absolu te maximum ratings and after ?...in output mode? in i/o system current consumption corrected sdac_vref+ in figure 9: power supply scheme modified table 20: current characteristics added bga100 in table 22: general operating conditions added values in table 27: embedded internal reference voltage filled values in table 28: typical and maximum current consumption from vdd supply at vdd = 3.6 v filled values in table 29: typical and maximum current consumption from vdda supply filled values in table 30: typical and maximum vdd consumption in stop and standby modes removed table: ?typical and maximum vdda consumption in stop modes? filled values in table 31: typical and maximum vdda consumption in stop and standby modes added vbat values in table 32: typical and maximum current consumption from vbat supply added typ values in table 33: typical current consumption in run mode, code with data processing running from flash and table 34: typical current consumption in sleep mode, code running from flash or ram added max value in table 41: lse oscillator characteristics (flse = 32.768 khz) modified min and max values in table 42: hsi oscillator characteristics added values in table 37: low-power mode wakeup timings added class values in table 47: ems characteristics modified values in table 48: emi characteristics added values in table 49: esd absolute maximum ratings added class value in table 50: electrical sensitivities modified values and descriptions in table 51: i/o current injection susceptibility
revision history stm32f373xx 132/136 docid022691 rev 5 07-sep-2012 2 (cont?d) filled values in table 70: wwdg min-max timeout value @72 mhz (pclk) filled values in table 58: spi characteristics filled values in table 59: i2s characteristics replaced table 60: adc characteristics added values in table 74: sdadc characteristics modified footnote in table 75: vrefsd+ pin characteristics replaced ?ain? with ?src? in table 61: rsrc max for fadc = 14 mhz and figure 30: typical connection diagram using the adc reordered chapters and cover page features. added subsection to gpios in table 2: device overview aligned sram with usb in figure 1: block diagram added ?do not reconfigure...? sentence in section 3.9: general-purpose inpu t/outputs (gpios) added table 7: stm32f373xx i2c implementation added table 8: stm32f373xx usart implementation merged spi and i2s into one section reshaped figure 5: stm32f373xx bga100 ballout and removed adc10 added notes column, modified i/o structure values and pin, function names, removed tim1_tx & tim1_rx in table 11: stm32f373xx pin definitions added the note ?do not reconfigure...? after ta ble 11 : stm32f373xx pin definitions modified ?x_ck? occurrences to ?i2sx_ck? in table 12: alternate functions for port pa to table 17: alternate functions for port pf added two gp i/os in figure 9: power supply scheme added caution after figure 9: power supply scheme added max values in table 23: operating conditions at power-up / power-down modified (1) footnote in table 24: embedded reset and power control block characteristics added row to table 27: embedded internal reference voltage added the note ? it is recommended...? under table 51: i/o current injection susceptibility modified table 51: i/o current in jection susceptibility modified temperature and current values in section 7.2.2: selecting the product temperature range added crystal epson-toyocom bullet under typical current consumption modified figure 9: power supply scheme removed boot 0 section modified table 73: usb: full-speed electrical characteristics table 82. document revision history (continued) date revision changes
docid022691 rev 5 133/136 stm32f373xx revision history 135 21-dec-2012 3 updated table 2: device overview , capacitive sensing channels peripheral added. updated table 3: capacitive sensing gpios available on stm32f373xx devices updated section 3.19: inter-integrated circuit interface (i2c) updated the function names in table 11: stm32f373 pin definitions updated table 20: current characteristics updated table 22: general operating conditions updated table 30: typical and maximum vdd consumption in stop and standby modes updated table 32: typical and maximum current consumption from vbat supply added figure 11: typical vbat current consumption (lse and rtc on/lsedrv[1:0]='00') updated table 33: typical current consumption in run mode, code with data processing running from flash and table 34: typical current consumption in sleep mode, code running from flash or ram added table 35: switching output i/o current consumption added table 36: peripheral current consumption , figure 16: hsi oscillator accuracy c haracterization results updated section 6.3.6: wakeup time from low-power mode updated table 37: low-power mode wakeup timings updated table 47: ems characteristics updated table 51: i/o current injection susceptibility updated table 52: i/o static characteristics updated , figure 18: tc and tta i/o input characteristics - ttl port , figure 19: five volt tolera nt (ft and ftf) i/o input characteristics - cmos port and figure 20: five volt tolerant (ft and ftf) i/o input characteristics - ttl port updated table 53: output voltage characteristics updated table 54: i/o ac characteristics updated table 55: nrst pin characteristics updated table 63: dac characteristics updated table 74: sdadc characteristics updated figure 35: lqfp100 ?14 x 14 mm 100-pin low- profile quad flat package outline , figure 38: lqfp64 ? 10 x 10 mm 64 pin low-profile quad flat package outline and figure 41: lqfp48 ? 7 x 7 mm, 48-pin low-profile quad flat package outline updated table 77: lqpf100 ? 14 x 14 mm low-profile quad flat package mechanical data , table 78: lqfp64 ? 10 x 10 mm low-profile quad flat package mechanical data and table 79: lqfp48 ? 7 x 7 mm, low-profile quad flat package mechanical data added figure 16: hsi oscillator accuracy characterization results table 82. document revision history (continued) date revision changes
revision history stm32f373xx 134/136 docid022691 rev 5 19-sep-2013 4 replaced ?cortex-m4f? with ?cortex-m4? throughout the document. removed part number stm32f372xx. added ?1.25 dmips/mhz (dhrystone 2.1)? in features . updated introduction . added reference to the stmtouch touch sensing firmware library in section 3.16: touch sensing controller (tsc) . added ?all i2s interfaces can operate in half-duplex mode only.? in section 3.21: serial peripheral interface (spi)/inter- integrated sound interfaces (i2s) . added row ?i2s full-duplex mode? to table 9: stm32f373xx spi/i2s implementation . modified introduction of i2c interface characteristics . added alternate function rtc_refin and removed additional function rtc_ref_clk_in to pins pa1 and pb15. replaced alternate function jntrst with njtrst for pin pb4. in table 12: alternate functions for port pa : replaced alternate function jtms-swdio with swdio-jtms for pin pa13, and jtck-swclk with swclk-jtck for pin pa14. added rows v ref+ and v refsd+ to table 22: general operating conditions . replaced "f apb1 = f ahb/2 " with "f apb1 = f ahb " for ?when the peripherals are enabled...? in typical current consumption . added comp in table 36: peripheral current consumption added conditions for f hse_ext in table 38: high-speed external user clock characteristics . added min and max values for acc hisi in table 42: hsi oscillator characteristics . replaced reference "jesd22-c101" with "ansi/esd stm5.3.1" in table 49: esd absolute maximum ratings . removed pins pb0 and pb1 in description of i inj in table 51: i/o current inject ion susceptibility . updated table 56: i2c characteristics . replaced all occurrences of ?gain/2? with ?gain*2? in table 74: sdadc characteristics . corrected typo in figure 21: i/o ac characteristics definition . replaced figure 23: i2c bus ac waveforms and measurement circuit .. added i dda(adc) and footnote 1 in table 60: adc characteristics table 82. document revision history (continued) date revision changes
docid022691 rev 5 135/136 stm32f373xx revision history 135 18-mar-2014 5 renamed part number stm32f37x to stm32f373xx added note1 in table 28: typical and maximum current consumption from vdd supply at vdd = 3.6 v updated chapter 3.14: digital-to-analog converter (dac) updated, added note 2 and 3 in table 57: i2c analog filter characteristics renamed t sp symbol with t af. added note for eg symbol in table 74: sdadc characteristics added all packages top view table 82. document revision history (continued) date revision changes
stm32f373xx 136/136 docid022691 rev 5 please read carefully: information in this document is provided solely in connection with st products. stmicroelectronics nv and its subsidiaries (?st ?) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described he rein at any time, without notice. all st products are sold pursuant to st?s terms and conditions of sale. purchasers are solely responsible for the choice, selection and use of the st products and services described herein, and st as sumes no liability whatsoever relating to the choice, selection or use of the st products and services described herein. no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. i f any part of this document refers to any third party products or services it shall not be deemed a license grant by st for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoev er of such third party products or services or any intellectual property contained therein. unless otherwise set forth in st?s terms and conditions of sale st disclaims any express or implied warranty with respect to the use and/or sale of st products including without limitation implied warranties of merchantability, fitness for a particul ar purpose (and their equivalents under the laws of any jurisdiction), or infringement of any patent, copyright or other intellectual property right. st products are not designed or authorized for use in: (a) safety critical applications such as life supporting, active implanted devices or systems with product functional safety requirements; (b) aeronautic applications; (c) automotive applications or environments, and/or (d) aerospace applications or environments. where st products are not designed for such use, the purchaser shall use products at purchaser?s sole risk, even if st has been informed in writing of such usage, unless a product is expressly designated by st as being intended for ? automotive, automotive safe ty or medical? industry domains according to st product design specifications. products formally escc, qml or jan qualified are deemed suitable for use in aerospace by the corresponding governmental agency. resale of st products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by st for the st product or service described herein and shall not create or extend in any manner whatsoev er, any liability of st. st and the st logo are trademarks or registered trademarks of st in various countries. information in this document supersedes and replaces all information previously supplied. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners. ? 2014 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - philippines - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of STM32F373VBH6

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X